
SOFTWARE ENGINEERING

VERIFICATION AND VALIDATION

 Lecture-32

TOPICS COVERED

 Verification and Validation

 Objectives

 Static and Dynamic Verification

 Types Testing

 Debugging Process

VERIFICATION AND VALIDATION

Assuring that a software

system meets a user's needs

OBJECTIVES

 To introduce software verification and validation and to

discuss the distinction between them

 To describe the program inspection process and its role in V

& V

 To explain static analysis as a verification technique

 To describe the Cleanroom software development process

VERIFICATION VS VALIDATION

 Verification:

 "Are we building the product right"

 The software should conform to its specification

 Validation:

 "Are we building the right product"

 The software should do what the user really

requires

THE V & V PROCESS

 As a whole life-cycle process - V & V must be

applied at each stage in the software process.

 Has two principal objectives

 The discovery of defects in a system

 The assessment of whether or not the system is usable

in

an operational situation.

STATIC AND DYNAMIC VERIFICATION

 Software inspections Concerned with analysis of the static
system representation to discover problems (static
verification)

 May be supplement by tool-based document and code analysis

 Software testing Concerned with exercising and observing
product behaviour (dynamic verification)

 The system is executed with test data and its operational behaviour is
observed

STATIC AND DYNAMIC V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design

Program

Prototype
Dynamic
validation

Static
verification

PROGRAM TESTING

 Can reveal the presence of errors NOT their

absence !!!

 A successful test is a test which discovers one

or more errors

 The only validation technique for non-functional

requirements

 Should be used in conjunction with static

verification to provide full V&V coverage

TYPES OF TESTING

 Defect testing

 Tests designed to discover system defects.

 A successful defect test is one which reveals the
presence
of defects in a system.

 Statistical testing

 tests designed to reflect the frequency of user inputs.
Used
for reliability estimation.

V& V GOALS

 Verification and validation should establish confidence
that the software is fit for purpose

 This does NOT mean completely free of defects

 Rather, it must be good enough for its intended use and the
type of use will determine the degree of confidence that is
needed

V & V CONFIDENCE

 Depends on system’s purpose, user expectations and
marketing environment

 Software function
 The level of confidence depends on how critical the software is to an

organisation

 User expectations
 Users may have low expectations of certain kinds of software.

 Now it is less acceptable to deliver unreliable systems, so software
companies must devote more effort to V&V!

 Marketing environment
 Getting a product to market early may be more important than finding

defects in the program

TESTING AND DEBUGGING

Defect testing and debugging are distinct processes

 (!) Verification and validation is concerned with establishing the
existence of defects in a program

 Debugging is concerned with

 - locating and
 - repairing these errors

 (!!) Debugging involves

 formulating a hypothesis about program behaviour

 then testing these hypotheses to find the system error

THE DEBUGGING PROCESS

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

V & V PLANNING

 Careful planning is required to get the most out of
testing and inspection processes

 Planning should start early in the development process

 The plan should identify the balance between static
verification and testing

 Test planning is about defining standards for the testing
process rather than describing product tests

THE V-MODEL OF DEVELOPMENT

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service
Acceptance

test
System

integration test
Sub-system

integration test

This diagram shows how test plans should be derived from the

system specification and design.

THE STRUCTURE OF A SOFTWARE TEST PLAN

 The testing process (a description of the major phases)

 Requirements traceability (a part of the user)

 Tested items

 Testing schedule

 Test recording procedures (it is not enough simply to run
 tests)

 Hardware and software requirements

 Constraints

SOFTWARE INSPECTIONS

 Involve people examining the source representation with
the aim of discovering anomalies and defects

 Do not require execution of a system so may be used
before implementation

 May be applied to any representation of the system
(requirements, design, test data, etc.)

 Very effective technique for discovering errors

INSPECTION SUCCESS

 Many different defects may be discovered in a

single inspection. In testing, one defect, may

mask another so several executions are required

 The reuse domain and programming knowledge so

reviewers are likely to have seen the types of error

that commonly arise

INSPECTIONS AND TESTING

 Inspections and testing are complementary and not
opposing verification techniques

 Both should be used during the V & V process

 Inspections can check conformance with a specification
but not conformance with the customer’s real
requirements

 Also inspections cannot check non-functional
characteristics such as performance, usability, etc.

PROGRAM INSPECTIONS – ARE REVIEWS WHOSE

OBJECTIVE IS PROGRAM DEFECT DETECTION.

 Formalised approach to document reviews

 Intended explicitly for defect DETECTION (not

correction)

 Defects may be logical errors, anomalies in the

code that might indicate an erroneous condition

(e.g. an uninitialised variable) or non-compliance

with standards

INSPECTION PRE-CONDITIONS

 A precise specification must be available

 Team members must be familiar with the
organisation standards

 Syntactically correct code must be available

 An error checklist should be prepared

 Management must accept that inspection will
increase costs early in the software process

 Management must not use inspections for staff appraisal

THE INSPECTION PROCESS

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

INSPECTION PROCEDURE

 System overview presented to inspection team

 Code and associated documents are

distributed to inspection team in advance

 Inspection takes place and discovered errors

are noted

 Modifications are made to repair discovered

errors

 Re-inspection may or may not be required

INSPECTION TEAMS

 Made up of at least 4 members

 Author of the code being inspected

 Inspector who finds errors, omissions and

inconsistencies

 Reader who reads the code to the team

 Moderator who chairs the meeting and notes

discovered errors

 Other roles are Scribe and Chief moderator

INSPECTION CHECKLISTS

 Checklist of common errors should be used to
drive the inspection

 Error checklist is programming language
dependent

 The 'weaker' the type checking, the larger the
checklist

 Examples:
 Initialisation,

 Constant naming,

 loop termination,

 array bounds, etc.

INSPECTION CHECKS

Fault class Inspection check

Data faults Are all program variables initialised before their values
are used?
Have all constants been named?
Should the lower bound of arrays be 0, 1, or something
else?
Should the upper bound of arrays be equal to the size of
the array or Size -1?
If character strings are used, is a delimiter explicitly
assigned?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?

Interface faults Do all function and procedure calls have the correct
number of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?

Storage management
faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into
account?

INSPECTION RATE

 500 statements/hour during overview

 125 source statement/hour during individual

preparation

 90-125 statements/hour can be inspected

 Inspection is therefore an expensive process

 Inspecting 500 lines costs about 40 man/hours

effort = £2800

AUTOMATED STATIC ANALYSIS

 Static analysers are software tools for source text

processing

 They parse the program text and try to discover

potentially erroneous conditions and bring these to

the attention of the V & V team

 Very effective as an aid to inspections. A

supplement to but not a replacement for

inspections

STATIC ANALYSIS CHECKS

Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

STAGES OF STATIC ANALYSIS

 Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.

 Data use analysis. Detects uninitialised
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.

 Interface analysis. Checks the consistency of
routine and procedure declarations and their
use

STAGES OF STATIC ANALYSIS
 Information flow analysis. Identifies the

dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review

 Path analysis. Identifies paths through the program and
sets out the statements executed in that path. Again,
potentially useful in the review process

 Both these stages generate vast amounts of information.
Must be used with care.

LINT STATIC ANALYSIS

138% more lint_ex.c

#include <stdio.h>

printarray (Anarray)

 int Anarray;

{

 printf(“%d”,Anarray);

}

main ()

{

 int Anarray[5]; int i; char c;

 printarray (Anarray, i, c);

 printarray (Anarray) ;

}

139% cc lint_ex.c

140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set

lint_ex.c(10): warning: i may be used before set

printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) ::

lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) ::

lint_ex.c(11)

printf returns value which is always ignored

USE OF STATIC ANALYSIS

 Particularly valuable when a language such as C is

used which has weak typing and hence many

errors are undetected by the compiler

 Less cost-effective for languages like Java that

have strong type checking and can therefore detect

many errors during compilation

CLEANROOM SOFTWARE DEVELOPMENT

 The name is derived from the 'Cleanroom'
process in semiconductor fabrication. The
philosophy is defect avoidance rather than
defect removal

 Software development process based on:

 Incremental development

 Formal specification.

 Static verification using correctness arguments

 Statistical testing to determine program reliability.

THE CLEANROOM PROCESS

Construct
structured
program

Define
software

increments

Formally
verify
code

Integrate
increment

Formally
specify
system

Develop
operational

profile
Design

statistical
tests

Test
integrated

system

Error rework

CLEANROOM PROCESS CHARACTERISTICS

 Formal specification using a state transition model

 Incremental development

 Structured programming - limited control and

abstraction constructs are used

 Static verification using rigorous inspections

 Statistical testing of the system

INCREMENTAL DEVELOPMENT

Formal
specification

Develop s/w
increment

Establish
rerquirements

Deliver
software

Frozen
specification

Requirements change request

FORMAL SPECIFICATION AND INSPECTIONS

 The state based model is a system specification
and the inspection process checks the program
against this model

 Programming approach is defined so that the
correspondence between the model and the system
is clear

 Mathematical arguments (not proofs) are used to
increase confidence in the inspection process

CLEANROOM PROCESS TEAMS

 Specification team. Responsible for developing
and maintaining the system specification

 Development team. Responsible for
developing and verifying the software. The
software is NOT executed or even compiled
during this process

 Certification team. Responsible for developing
a set of statistical tests to exercise the software
after development. Reliability growth models
used to determine when reliability is acceptable

CLEANROOM PROCESS EVALUATION

 Results in IBM have been very impressive with
few discovered faults in delivered systems

 Independent assessment shows that the
process is no more expensive than other
approaches

 Fewer errors than in a 'traditional' development
process

 Not clear how this approach can be transferred
to an environment with less skilled or less
highly motivated engineers

KEY POINTS

 Verification and validation are not the same thing.
Verification shows conformance with specification;
validation shows that the program meets the
customer’s needs

 Test plans should be drawn up to guide the testing
process.

 Static verification techniques involve examination
and analysis of the program for error detection

KEY POINTS

 Program inspections are very effective in discovering
errors

 Program code in inspections is checked by a small team
to locate software faults

 Static analysis tools can discover program anomalies
which may be an indication of faults in the code

 The Cleanroom development process depends on
incremental development, static verification and
statistical testing

