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THE PROBLEMS WITH OUR REQUIREMENTS 

PRACTICES 

 We have trouble understanding the requirements that we do 
acquire from the customer 

 We often record requirements in a disorganized manner 

 We spend far too little time verifying what we do record 

 We allow change to control us, rather than establishing 
mechanisms to control change 

 Most importantly, we fail to establish a solid foundation for the 
system or software that the user wants built 
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THE PROBLEMS WITH OUR REQUIREMENTS 

PRACTICES (CONTINUED) 

 Many software developers argue that 
 Building software is so compelling that we want to jump right in 

(before having a clear understanding of what is needed) 

 Things will become clear as we build the software 

 Project stakeholders will be able to better understand what they 
need only after examining early iterations of the software 

 Things change so rapidly that requirements engineering is a waste 
of time 

 The bottom line is producing a working program and that all else is 
secondary 

 All of these arguments contain some truth, especially for small 
projects that take less than one month to complete 

 However, as software grows in size and complexity, these 
arguments begin to break down and can lead to a failed software 
project  
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A SOLUTION: REQUIREMENTS ENGINEERING 

 Begins during the communication activity and continues into the 

modeling activity 

 Builds a bridge from the system requirements into software design and 

construction 

 Allows  the requirements engineer to examine 

 the context of the software work to be performed 

 the specific needs that design and construction must address 

 the priorities that guide the order in which work is to be completed 

 the information, function, and behavior that will have a profound impact on 

the resultant design 
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REQUIREMENTS ENGINEERING TASKS 

 Seven distinct tasks 

 Inception 

 Elicitation 

 Elaboration 

 Negotiation 

 Specification 

 Validation 

 Requirements Management 

 Some of these tasks may occur in parallel and all are adapted to 
the needs of the project 

 All strive to define what the customer wants 

 All serve to establish a solid foundation for the design and 
construction of the software 
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EXAMPLE PROJECT: CAMPUS INFORMATION 

ACCESS KIOSK 

 Both podium-high and desk-high terminals located throughout 
the campus in all classroom buildings, admin buildings, labs, and 
dormitories 

 Hand/Palm-login and logout (seamlessly) 

 Voice input 

 Optional audio/visual or just visual output 

 Immediate access to all campus information plus 

 E-mail  

 Cell phone voice messaging 
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INCEPTION TASK 

 During inception, the requirements engineer asks a set of questions to 
establish… 

 A basic understanding of the problem 

 The people who want a solution 

 The nature of the solution that is desired 

 The effectiveness of preliminary communication and collaboration between 
the customer and the developer 

 Through these questions, the requirements engineer needs to…  

 Identify the stakeholders 

 Recognize multiple viewpoints 

 Work toward collaboration 

 Break the ice and initiate the communication 
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THE FIRST SET OF QUESTIONS 

 Who is behind the request for this work? 

 Who will use the solution? 

 What will be the economic benefit of a successful solution? 

 Is there another source for the solution that you need? 
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These questions focus on the customer, other stakeholders, the overall 

goals, and the benefits  



THE NEXT SET OF QUESTIONS 

 How would you characterize "good" output that would be 

generated by a successful solution? 

 What problem(s) will this solution address? 

 Can you show me (or describe) the business environment in 

which the solution will be used? 

 Will special performance issues or constraints affect the way the 

solution is approached? 
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These questions enable the requirements engineer to gain a better 

understanding of the problem and allow the customer to voice his or 

her perceptions about a solution  



THE FINAL SET OF QUESTIONS 

 Are you the right person to answer these questions?  Are your 

answers "official"? 

 Are my questions relevant to the problem that you have? 

 Am I asking too many questions? 

 Can anyone else provide additional information? 

 Should I be asking you anything else? 
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These questions focus on the effectiveness of the 

communication activity itself  
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ELICITATION TASK 

 Eliciting requirements is difficult because of  

 Problems of scope in identifying the boundaries of the system or 
specifying too much technical detail rather than overall system 
objectives 

 Problems of understanding what is wanted, what the problem 
domain is, and what the computing environment can handle 
(Information that is believed to be "obvious" is often omitted) 

 Problems of volatility because the requirements change over time 

 Elicitation may be accomplished through two activities 

 Collaborative requirements gathering 

 Quality function deployment 
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BASIC GUIDELINES OF COLLABORATIVE 

REQUIREMENTS GATHERING 

 Meetings are conducted and attended by both software 
engineers, customers, and other interested stakeholders 

 Rules for preparation and participation are established 

 An agenda is suggested that is formal enough to cover all 
important points but informal enough to encourage the free flow 
of ideas 

 A "facilitator" (customer, developer, or outsider) controls the 
meeting 

 A "definition mechanism" is used such as work sheets, flip 
charts, wall stickers, electronic bulletin board, chat room, or 
some other virtual forum 

 The goal is to identify the problem, propose elements of the 
solution, negotiate different approaches, and specify a 
preliminary set of solution requirements 
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QUALITY FUNCTION DEPLOYMENT 

 This is a technique that translates the needs of the customer into 
technical requirements for software 

 It emphasizes an understanding of what is valuable to the 
customer and then deploys these values throughout the 
engineering process through functions, information, and tasks 

 It identifies three types of requirements 

 Normal requirements: These requirements are the objectives and 
goals stated for a product or system during meetings with the 
customer 

 Expected requirements:  These requirements are implicit to the 
product or system and may be so fundamental that the customer 
does not explicitly state them 

 Exciting requirements: These requirements are for features that go 
beyond the customer's expectations and prove to be very satisfying 
when present 
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ELICITATION WORK PRODUCTS 

 A statement of need and feasibility 

 A bounded statement of scope for the system or product 

 A list of customers, users, and other stakeholders who 
participated in requirements elicitation 

 A description of the system's technical environment 

 A list of requirements (organized by function) and the domain 
constraints that apply to each 

 A set of preliminary usage scenarios (in the form of use cases) 
that provide insight into the use of the system or product under 
different operating conditions 

 Any prototypes developed to better define requirements 
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The work products will vary depending on the system, but should 

include one or more of the following items 
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ELABORATION TASK 

 During elaboration, the software engineer takes the information 
obtained during inception and elicitation and begins to expand 
and refine it 

 Elaboration focuses on developing a refined technical model of 
software functions, features, and constraints 

 It is an analysis modeling task 

 Use cases are developed 

 Domain classes are identified along with their attributes and 
relationships 

 State machine diagrams are used to capture the life on an object 

 The end result is an analysis model that defines the functional, 
informational, and behavioral domains of the problem    
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DEVELOPING USE CASES 

 Step One – Define the set of actors that will be involved in the 

story 

 Actors are people, devices, or other systems that use the system 

or product within the context of the function and behavior that is 

to be described 

 Actors are anything that communicate with the system or product 

and that are external to the system itself 

 Step Two – Develop use cases, where each one answers a 

set of questions 
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QUESTIONS COMMONLY ANSWERED 

BY A USE CASE 

 Who is the primary actor(s), the secondary actor(s)? 

 What are the actor’s goals? 

 What preconditions should exist before the scenario begins? 

 What main tasks or functions are performed by the actor? 

 What exceptions might be considered as the scenario is described? 

 What variations in the actor’s interaction are possible? 

 What system information will the actor acquire, produce, or change? 

 Will the actor have to inform the system about changes in the 
external environment? 

 What information does the actor desire from the system? 

 Does the actor wish to be informed about unexpected changes? 
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ELEMENTS OF THE ANALYSIS MODEL 

 Scenario-based elements 

 Describe the system from the user's point of view using scenarios 
that are depicted in use cases and activity diagrams 

 Class-based elements 

 Identify the domain classes for the objects manipulated by the 
actors, the attributes of these classes, and how they interact with 
one another; they utilize class diagrams to do this 

 Behavioral elements 

 Use state diagrams to represent the state of the system, the events 
that cause the system to change state, and the actions that are 
taken as a result of a particular event; can also be applied to each 
class in the system 

 Flow-oriented elements 

 Use data flow diagrams to show the input data that comes into a 
system, what functions are applied to that data to do 
transformations, and what resulting output data are produced 
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NEGOTIATION TASK 

 During negotiation, the software engineer reconciles the conflicts 
between what the customer wants and what can be achieved 
given limited business resources 

 Requirements are ranked (i.e., prioritized) by the customers, 
users, and other stakeholders 

 Risks associated with each requirement are identified and 
analyzed 

 Rough guesses of development effort are made and used to 
assess the impact of each requirement on project cost and 
delivery time 

 Using an iterative approach, requirements are eliminated, 
combined and/or modified so that each party achieves some 
measure of satisfaction 
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THE ART OF NEGOTIATION 

 Recognize that it is not competition 

 Map out a strategy 

 Listen actively 

 Focus on the other party’s interests 

 Don’t let it get personal 

 Be creative 

 Be ready to commit 
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SPECIFICATION TASK 

 A specification is the final work product produced by the 
requirements engineer 

 It is normally in the form of a software requirements specification 

 It serves as the foundation for subsequent software engineering 
activities 

 It describes the function and performance of a computer-based 
system and the constraints that will govern its development 

 It formalizes the informational, functional, and behavioral 
requirements of the proposed software in both a graphical and 
textual format 
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TYPICAL CONTENTS OF A 

SOFTWARE REQUIREMENTS 

SPECIFICATION 
 Requirements 

 Required states and modes 

 Software requirements grouped by capabilities (i.e., functions, 
objects) 

 Software external interface requirements 

 Software internal interface requirements 

 Software internal data requirements 

 Other software requirements (safety, security, privacy, 
environment, hardware, software, communications, quality, 
personnel, training, logistics, etc.) 

 Design and implementation constraints 

 Qualification provisions to ensure each requirement has been 
met 
 Demonstration, test, analysis, inspection, etc. 

 Requirements traceability 
 Trace back to the system or subsystem where each requirement 

applies 29 
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VALIDATION TASK 

 During validation, the work products produced as a result of 
requirements engineering are assessed for quality 

 The specification is examined to ensure that 

 all software requirements have been stated unambiguously 

 inconsistencies, omissions, and errors have been detected and 
corrected 

 the work products conform to the standards established for the 
process, the project, and the product 

 The formal technical review serves as the primary requirements 
validation mechanism 

 Members include software engineers, customers, users, and other 
stakeholders 
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QUESTIONS TO ASK WHEN VALIDATING 

REQUIREMENTS 

 Is each requirement consistent with the overall objective for the 
system/product? 

 Have all requirements been specified at the proper level of 
abstraction? That is, do some requirements provide a level of 
technical detail that is inappropriate at this stage? 

 Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the 
system? 

 Is each requirement bounded and unambiguous? 

 Does each requirement have attribution? That is, is a source 
(generally, a specific individual) noted for each requirement? 
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QUESTIONS TO ASK WHEN VALIDATING 

REQUIREMENTS (CONTINUED) 
 Do any requirements conflict with other requirements? 

 Is each requirement achievable in the technical environment 
that will house the system or product? 

 Is each requirement testable, once implemented? 
 Approaches: Demonstration, actual test, analysis, or inspection 

 Does the requirements model properly reflect the information, 
function, and behavior of the system to be built? 

 Has the requirements model been “partitioned” in a way that 
exposes progressively more detailed information about the 
system? 
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REQUIREMENTS MANAGEMENT TASK 

 During requirements management, the project team performs a 
set of activities to identify, control, and track requirements and 
changes to the requirements at any time as the project proceeds 

 Each requirement is assigned a unique identifier 

 The requirements are then placed into one or more traceability 
tables  

 These tables may be stored in a database that relate features, 
sources, dependencies, subsystems, and interfaces to the 
requirements 

 A requirements traceability table is also placed at the end of the 
software requirements specification 
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SUMMARY 
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