
SOFTWARE ENGINEERING

LECTURE-27

Requirements Engineering

TOPICS COVERED

- Problems with requirements practices

- Requirements engineering tasks

- Inception

- Elicitation

- Elaboration

- Negotiation

- Specification

- Validation

- Requirements management

THE PROBLEMS WITH OUR REQUIREMENTS

PRACTICES

 We have trouble understanding the requirements that we do
acquire from the customer

 We often record requirements in a disorganized manner

 We spend far too little time verifying what we do record

 We allow change to control us, rather than establishing
mechanisms to control change

 Most importantly, we fail to establish a solid foundation for the
system or software that the user wants built

4 (more on next slide)

THE PROBLEMS WITH OUR REQUIREMENTS

PRACTICES (CONTINUED)

 Many software developers argue that
 Building software is so compelling that we want to jump right in

(before having a clear understanding of what is needed)

 Things will become clear as we build the software

 Project stakeholders will be able to better understand what they
need only after examining early iterations of the software

 Things change so rapidly that requirements engineering is a waste
of time

 The bottom line is producing a working program and that all else is
secondary

 All of these arguments contain some truth, especially for small
projects that take less than one month to complete

 However, as software grows in size and complexity, these
arguments begin to break down and can lead to a failed software
project

5

A SOLUTION: REQUIREMENTS ENGINEERING

 Begins during the communication activity and continues into the

modeling activity

 Builds a bridge from the system requirements into software design and

construction

 Allows the requirements engineer to examine

 the context of the software work to be performed

 the specific needs that design and construction must address

 the priorities that guide the order in which work is to be completed

 the information, function, and behavior that will have a profound impact on

the resultant design

 6

REQUIREMENTS ENGINEERING TASKS

 Seven distinct tasks

 Inception

 Elicitation

 Elaboration

 Negotiation

 Specification

 Validation

 Requirements Management

 Some of these tasks may occur in parallel and all are adapted to
the needs of the project

 All strive to define what the customer wants

 All serve to establish a solid foundation for the design and
construction of the software

7

EXAMPLE PROJECT: CAMPUS INFORMATION

ACCESS KIOSK

 Both podium-high and desk-high terminals located throughout
the campus in all classroom buildings, admin buildings, labs, and
dormitories

 Hand/Palm-login and logout (seamlessly)

 Voice input

 Optional audio/visual or just visual output

 Immediate access to all campus information plus

 E-mail

 Cell phone voice messaging

8

9

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

INCEPTION TASK

 During inception, the requirements engineer asks a set of questions to
establish…

 A basic understanding of the problem

 The people who want a solution

 The nature of the solution that is desired

 The effectiveness of preliminary communication and collaboration between
the customer and the developer

 Through these questions, the requirements engineer needs to…

 Identify the stakeholders

 Recognize multiple viewpoints

 Work toward collaboration

 Break the ice and initiate the communication

10

THE FIRST SET OF QUESTIONS

 Who is behind the request for this work?

 Who will use the solution?

 What will be the economic benefit of a successful solution?

 Is there another source for the solution that you need?

11

These questions focus on the customer, other stakeholders, the overall

goals, and the benefits

THE NEXT SET OF QUESTIONS

 How would you characterize "good" output that would be

generated by a successful solution?

 What problem(s) will this solution address?

 Can you show me (or describe) the business environment in

which the solution will be used?

 Will special performance issues or constraints affect the way the

solution is approached?

12

These questions enable the requirements engineer to gain a better

understanding of the problem and allow the customer to voice his or

her perceptions about a solution

THE FINAL SET OF QUESTIONS

 Are you the right person to answer these questions? Are your

answers "official"?

 Are my questions relevant to the problem that you have?

 Am I asking too many questions?

 Can anyone else provide additional information?

 Should I be asking you anything else?

13

These questions focus on the effectiveness of the

communication activity itself

14

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

ELICITATION TASK

 Eliciting requirements is difficult because of

 Problems of scope in identifying the boundaries of the system or
specifying too much technical detail rather than overall system
objectives

 Problems of understanding what is wanted, what the problem
domain is, and what the computing environment can handle
(Information that is believed to be "obvious" is often omitted)

 Problems of volatility because the requirements change over time

 Elicitation may be accomplished through two activities

 Collaborative requirements gathering

 Quality function deployment

15

BASIC GUIDELINES OF COLLABORATIVE

REQUIREMENTS GATHERING

 Meetings are conducted and attended by both software
engineers, customers, and other interested stakeholders

 Rules for preparation and participation are established

 An agenda is suggested that is formal enough to cover all
important points but informal enough to encourage the free flow
of ideas

 A "facilitator" (customer, developer, or outsider) controls the
meeting

 A "definition mechanism" is used such as work sheets, flip
charts, wall stickers, electronic bulletin board, chat room, or
some other virtual forum

 The goal is to identify the problem, propose elements of the
solution, negotiate different approaches, and specify a
preliminary set of solution requirements

16

QUALITY FUNCTION DEPLOYMENT

 This is a technique that translates the needs of the customer into
technical requirements for software

 It emphasizes an understanding of what is valuable to the
customer and then deploys these values throughout the
engineering process through functions, information, and tasks

 It identifies three types of requirements

 Normal requirements: These requirements are the objectives and
goals stated for a product or system during meetings with the
customer

 Expected requirements: These requirements are implicit to the
product or system and may be so fundamental that the customer
does not explicitly state them

 Exciting requirements: These requirements are for features that go
beyond the customer's expectations and prove to be very satisfying
when present

17

ELICITATION WORK PRODUCTS

 A statement of need and feasibility

 A bounded statement of scope for the system or product

 A list of customers, users, and other stakeholders who
participated in requirements elicitation

 A description of the system's technical environment

 A list of requirements (organized by function) and the domain
constraints that apply to each

 A set of preliminary usage scenarios (in the form of use cases)
that provide insight into the use of the system or product under
different operating conditions

 Any prototypes developed to better define requirements

18

The work products will vary depending on the system, but should

include one or more of the following items

19

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

ELABORATION TASK

 During elaboration, the software engineer takes the information
obtained during inception and elicitation and begins to expand
and refine it

 Elaboration focuses on developing a refined technical model of
software functions, features, and constraints

 It is an analysis modeling task

 Use cases are developed

 Domain classes are identified along with their attributes and
relationships

 State machine diagrams are used to capture the life on an object

 The end result is an analysis model that defines the functional,
informational, and behavioral domains of the problem

20

DEVELOPING USE CASES

 Step One – Define the set of actors that will be involved in the

story

 Actors are people, devices, or other systems that use the system

or product within the context of the function and behavior that is

to be described

 Actors are anything that communicate with the system or product

and that are external to the system itself

 Step Two – Develop use cases, where each one answers a

set of questions

21

(More on next slide)

QUESTIONS COMMONLY ANSWERED

BY A USE CASE

 Who is the primary actor(s), the secondary actor(s)?

 What are the actor’s goals?

 What preconditions should exist before the scenario begins?

 What main tasks or functions are performed by the actor?

 What exceptions might be considered as the scenario is described?

 What variations in the actor’s interaction are possible?

 What system information will the actor acquire, produce, or change?

 Will the actor have to inform the system about changes in the
external environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected changes?

22

ELEMENTS OF THE ANALYSIS MODEL

 Scenario-based elements

 Describe the system from the user's point of view using scenarios
that are depicted in use cases and activity diagrams

 Class-based elements

 Identify the domain classes for the objects manipulated by the
actors, the attributes of these classes, and how they interact with
one another; they utilize class diagrams to do this

 Behavioral elements

 Use state diagrams to represent the state of the system, the events
that cause the system to change state, and the actions that are
taken as a result of a particular event; can also be applied to each
class in the system

 Flow-oriented elements

 Use data flow diagrams to show the input data that comes into a
system, what functions are applied to that data to do
transformations, and what resulting output data are produced

23

24

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

NEGOTIATION TASK

 During negotiation, the software engineer reconciles the conflicts
between what the customer wants and what can be achieved
given limited business resources

 Requirements are ranked (i.e., prioritized) by the customers,
users, and other stakeholders

 Risks associated with each requirement are identified and
analyzed

 Rough guesses of development effort are made and used to
assess the impact of each requirement on project cost and
delivery time

 Using an iterative approach, requirements are eliminated,
combined and/or modified so that each party achieves some
measure of satisfaction

25

THE ART OF NEGOTIATION

 Recognize that it is not competition

 Map out a strategy

 Listen actively

 Focus on the other party’s interests

 Don’t let it get personal

 Be creative

 Be ready to commit

26

27

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

SPECIFICATION TASK

 A specification is the final work product produced by the
requirements engineer

 It is normally in the form of a software requirements specification

 It serves as the foundation for subsequent software engineering
activities

 It describes the function and performance of a computer-based
system and the constraints that will govern its development

 It formalizes the informational, functional, and behavioral
requirements of the proposed software in both a graphical and
textual format

28

TYPICAL CONTENTS OF A

SOFTWARE REQUIREMENTS

SPECIFICATION
 Requirements

 Required states and modes

 Software requirements grouped by capabilities (i.e., functions,
objects)

 Software external interface requirements

 Software internal interface requirements

 Software internal data requirements

 Other software requirements (safety, security, privacy,
environment, hardware, software, communications, quality,
personnel, training, logistics, etc.)

 Design and implementation constraints

 Qualification provisions to ensure each requirement has been
met
 Demonstration, test, analysis, inspection, etc.

 Requirements traceability
 Trace back to the system or subsystem where each requirement

applies 29

30

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

VALIDATION TASK

 During validation, the work products produced as a result of
requirements engineering are assessed for quality

 The specification is examined to ensure that

 all software requirements have been stated unambiguously

 inconsistencies, omissions, and errors have been detected and
corrected

 the work products conform to the standards established for the
process, the project, and the product

 The formal technical review serves as the primary requirements
validation mechanism

 Members include software engineers, customers, users, and other
stakeholders

31

QUESTIONS TO ASK WHEN VALIDATING

REQUIREMENTS

 Is each requirement consistent with the overall objective for the
system/product?

 Have all requirements been specified at the proper level of
abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?

 Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?

 Is each requirement bounded and unambiguous?

 Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?

32

(more on next slide)

QUESTIONS TO ASK WHEN VALIDATING

REQUIREMENTS (CONTINUED)
 Do any requirements conflict with other requirements?

 Is each requirement achievable in the technical environment
that will house the system or product?

 Is each requirement testable, once implemented?
 Approaches: Demonstration, actual test, analysis, or inspection

 Does the requirements model properly reflect the information,
function, and behavior of the system to be built?

 Has the requirements model been “partitioned” in a way that
exposes progressively more detailed information about the
system?

33

34

Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification

REQUIREMENTS MANAGEMENT TASK

 During requirements management, the project team performs a
set of activities to identify, control, and track requirements and
changes to the requirements at any time as the project proceeds

 Each requirement is assigned a unique identifier

 The requirements are then placed into one or more traceability
tables

 These tables may be stored in a database that relate features,
sources, dependencies, subsystems, and interfaces to the
requirements

 A requirements traceability table is also placed at the end of the
software requirements specification

35

SUMMARY

36 Requirements

Management

Validation

Inception

Elicitation

Elaboration

Negotiation

Specification



