
SOFTWARE ENGINEERING 



LECTURE-24 

 
Estimation for Software Projects 



TOPICS COVERED 

 

   

- Project planning 

- Scope and feasibility 

- Project resources 

- Estimation of project cost and effort 

- Decomposition techniques 

- Empirical estimation models 



PROJECT PLANNING 



SOFTWARE PROJECT PLANNING 
 Software project planning encompasses five major activities 

 Estimation, scheduling, risk analysis, quality management planning, 
and change management planning 

 Estimation determines how much money, effort, resources, and 
time it will take to build a specific system or product 

 The software team first estimates  

 The work to be done 

 The resources required 

 The time that will elapse from start to finish 

 Then they establish a project schedule that  

 Defines tasks and milestones 

 Identifies who is responsible for conducting each task 

 Specifies the inter-task dependencies 

5 



OBSERVATIONS ON ESTIMATION 

 Planning requires technical managers and the software team to 

make an initial commitment 

 Process and project metrics can provide a historical perspective 

and valuable input for generation of quantitative estimates 

 Past experience can aid greatly 

 Estimation carries inherent risk, and this risk leads to uncertainty 

 The availability of historical information has a strong influence on 

estimation risk  

6 

(More on next slide) 



OBSERVATIONS ON ESTIMATION (CONTINUED) 

 When software metrics are available from past projects 

 Estimates can be made with greater assurance 

 Schedules can be established to avoid past difficulties 

 Overall risk is reduced 

 Estimation risk is measured by the degree of uncertainty in the 

quantitative estimates for cost, schedule, and resources 

 Nevertheless, a project manager should not become obsessive 

about estimation 

 Plans should be iterative and allow adjustments as time passes and 

more is made certain 

7 
"It is the mark of an instructed mind to rest satisfied with the degree of precision 

that the nature of the subject admits, and not to seek exactness when only an 

approximation of the truth is possible."        ARISTOTLE 



TASK SET FOR PROJECT PLANNING 
1) Establish project scope 
2) Determine feasibility 
3) Analyze risks 
4) Define required resources 

a) Determine human resources required 
b) Define reusable software resources 
c) Identify environmental resources 

5) Estimate cost and effort 
a) Decompose the problem 
b) Develop two or more estimates using different approaches 
c) Reconcile the estimates 

6) Develop a project schedule 
a) Establish a meaningful task set 
b) Define a task network 
c) Use scheduling tools to develop a timeline chart 
d) Define schedule tracking mechanisms 

8 



EXAMPLE PROJECT: CAMPUS INFORMATION 

ACCESS KIOSK 

 Both podium-high and desk-high terminals located throughout 
the campus in all classroom buildings, admin buildings, labs, and 
dormitories 

 Hand/Palm-login and logout (seamlessly) 

 Voice input 

 Optional audio/visual or just visual output 

 Immediate access to all campus information plus 

 E-mail  

 Cell phone voice messaging 

 Text messaging 
 

9 



SCOPE AND FEASIBILITY 



SOFTWARE SCOPE 

 Software scope describes 

 The functions and features that are to be delivered to end users 

 The data that are input to and output from the system 

 The "content" that is presented to users as a consequence of using 

the software 

 The performance, constraints, interfaces, and reliability that bound 

the system 

 Scope can be define using two techniques 

 A narrative description of software scope is developed after 

communication with all stakeholders 

 A set of use cases is developed by end users 

 

11 

(More on next slide) 



SOFTWARE SCOPE (CONTINUED) 

 After the scope has been identified, two questions are asked 

 Can we build software to meet this scope?   

 Is the project feasible? 

 Software engineers too often rush (or are pushed) past these 

questions 

 Later they become mired in a project that is doomed from the onset 

 

12 



FEASIBILITY  

 After the scope is resolved, feasibility is addressed 

 Software feasibility has four dimensions 

 Technology – Is the project technically feasible? Is it within the state of 

the art? Can defects be reduced to a level matching the application's 

needs? 

 Finance – Is is financially feasible?  Can development be completed at a 

cost that the software organization, its client, or the market can afford? 

 Time – Will the project's time-to-market beat the competition? 

 Resources – Does the software organization have the resources needed 

to succeed in doing the project?  

 

13 

Another view recommends the following feasibility dimensions: technological,  

economical, legal, operational, and schedule issues (TELOS) 



PROJECT RESOURCES 



RESOURCE ESTIMATION 

 Three major categories of software engineering resources 

 People 

 Development environment 

 Reusable software components 

 Often neglected during planning but become a paramount concern during 

the construction phase of the software process 

 Each resource is specified with 

 A description of the resource 

 A statement of availability 

 The time when the resource will be required 

 The duration of time that the resource will be applied 

 

 15 

Time window 



CATEGORIES OF RESOURCES 

16 

People 

- Number required 

- Skills required 

- Geographical location 

Development Environment 

- Software tools 

- Computer hardware 

- Network resources 

Reusable Software Components 

- Off-the-shelf components 

- Full-experience components 

- Partial-experience components 

- New components 

The 

Project 



HUMAN RESOURCES 

 Planners need to select the number and the kind of people 
skills needed to complete the project 

 They need to specify the organizational position and job 
specialty for each person 

 Small projects of a few person-months may only need one 
individual 

 Large projects spanning many person-months or years require 
the location of the person to be specified also 

 The number of people required can be determined only after 
an estimate of the development effort 

  

17 



DEVELOPMENT ENVIRONMENT RESOURCES 

 A software engineering environment (SEE) incorporates 

hardware, software, and network resources that provide 

platforms and tools to develop and test software work 

products 

 Most software organizations have many projects that require 

access to the SEE provided by the organization 

 Planners must identify the time window required for hardware 

and software and verify that these resources will be available 

18 



REUSABLE SOFTWARE RESOURCES 
 Off-the-shelf components 

 Components are from a third party or were developed for a previous 
project 

 Ready to use; fully validated and documented; virtually no risk 

 Full-experience components 

 Components are similar to the software that needs to be built 

 Software team has full experience in the application area of these 
components 

 Modification of components will incur relatively low risk 

 Partial-experience components 

 Components are related somehow to the software that needs to be built 
but will require substantial modification 

 Software team has only limited experience in the application area of these 
components 

 Modifications that are required have a fair degree of risk 

 New components 

 Components must be built from scratch by the software team specifically 
for the needs of the current project 

 Software team has no practical experience in the application area 

 Software development of components has a high degree of risk 

19 



ESTIMATION OF PROJECT COST 

AND EFFORT 



FACTORS AFFECTING PROJECT 

ESTIMATION 

 The accuracy of a software project estimate is predicated on 

 The degree to which the planner has properly estimated the size (e.g., 
KLOC) of the product to be built 

 The ability to translate the size estimate into human effort, calendar 
time, and money 

 The degree to which the project plan reflects the abilities of the software 
team 

 The stability of both the product requirements and the environment that 
supports the software engineering effort 

21 



PROJECT ESTIMATION OPTIONS 

 Options for achieving reliable cost and effort estimates 

1) Delay estimation until late in the project (we should be able to 
achieve 100% accurate estimates after the project is complete) 

2) Base estimates on similar projects that have already been 
completed 

3) Use relatively simple decomposition techniques to generate 
project cost and effort estimates 

4) Use one or more empirical estimation models for software cost 
and effort estimation 

 Option #1 is not practical, but results in good numbers 

 Option #2 can work reasonably well, but it also relies on other 
project influences being roughly equivalent 

 Options #3 and #4 can be done in tandem to cross check 
each other 

 22 



PROJECT ESTIMATION APPROACHES 

 Decomposition techniques 

 These take a "divide and conquer" approach 

 Cost and effort estimation are performed in a stepwise fashion by 

breaking down a project into major functions and related 

software engineering activities 

 Empirical estimation models 

 Offer a potentially valuable estimation approach if the historical 

data used to seed the estimate is good    

 

23 



DECOMPOSITION TECHNIQUES 



INTRODUCTION 

 Before an estimate can be made and decomposition 
techniques applied, the planner must  

 Understand the scope of the software to be built 

 Generate an estimate of the software’s size 

 Then one of two approaches are used 

 Problem-based estimation 

 Based on either source lines of code or function point estimates 

 Process-based estimation 

 Based on the effort required to accomplish each task 

 

25 



APPROACHES TO SOFTWARE SIZING 
 Function point sizing 

 Develop estimates of the information domain characteristics (Ch. 15 – 
Product Metrics for Software) 

 Standard component sizing 
 Estimate the number of occurrences of each standard component 

 Use historical project data to determine the delivered LOC size per standard 
component 

 Change sizing 
 Used when changes are being made to existing software 

 Estimate the number and type of modifications that must be accomplished 

 Types of modifications include reuse, adding code, changing code, and 
deleting code 

 An effort ratio is then used to estimate each type of change and the size of 
the change 

26 The results of these estimates are used to compute an optimistic (low), a most likely, 

and a pessimistic (high) value for software size 



PROBLEM-BASED ESTIMATION 

1) Start with a bounded statement of scope 

2) Decompose the software into problem functions that can each 
be estimated individually  

3) Compute an LOC or FP value for each function 

4) Derive cost or effort estimates by applying the LOC or FP 
values to your baseline productivity metrics (e.g., 
LOC/person-month or FP/person-month) 

5) Combine function estimates to produce an overall estimate for 
the entire project 

 

27 

(More on next slide) 



PROBLEM-BASED ESTIMATION 

(CONTINUED) 

 In general, the LOC/pm and FP/pm metrics should be computed by 
project domain 
 Important factors are team size, application area, and complexity  

 LOC and FP estimation differ in the level of detail required for 
decomposition with each value 

 For LOC, decomposition of functions is essential and should go into 

considerable detail (the more detail, the more accurate the estimate) 

 For FP, decomposition occurs for the five information domain 

characteristics and the 14 adjustment factors 

 External inputs, external outputs, external inquiries, internal logical files, external 

interface files 

28 

pm = person month 



PROBLEM-BASED ESTIMATION 

(CONTINUED) 

 For both approaches, the planner uses lessons learned to estimate an 

optimistic, most likely, and pessimistic size value for each function or 

count (for each information domain value) 

 Then the expected size value S is computed as follows: 

 
 S = (Sopt + 4Sm + Spess)/6 

 

 Historical LOC or FP data is then compared to S in order to cross-

check it 

29 



PROCESS-BASED ESTIMATION 

1) Identify the set of functions that the software needs to perform 
as obtained from the project scope 

2) Identify the series of framework activities that need to be 
performed for each function 

3) Estimate the effort (in person months) that will be required to 
accomplish each software process activity for each function 

 

30 

(More on next slide) 



PROCESS-BASED ESTIMATION (CONTINUED) 

4) Apply average labor rates (i.e., cost/unit effort) to the effort 
estimated for each process activity 

5) Compute the total cost and effort for each function and each 
framework activity (See table in Pressman, p. 655) 

6) Compare the resulting values to those obtained by way of the 
LOC and FP estimates 

• If both sets of estimates agree, then your numbers are highly 
reliable 

• Otherwise, conduct further investigation and analysis concerning 
the function and activity breakdown 

 

31 

This is the most commonly used of the two estimation techniques (problem and process) 



RECONCILING ESTIMATES 

 The results gathered from the various estimation techniques 
must be reconciled to produce a single estimate of effort, 
project duration, and cost 

 If widely divergent estimates occur, investigate the following 
causes 

 The scope of the project is not adequately understood or has 
been misinterpreted by the planner 

 Productivity data used for problem-based estimation techniques 
is inappropriate for the application, obsolete (i.e., outdated for the 
current organization), or has been misapplied 

 The planner must determine the cause of divergence and then 
reconcile the estimates  

32 



EMPIRICAL ESTIMATION MODELS 



INTRODUCTION 

 Estimation models for computer software use empirically 

derived formulas to predict effort as a function of LOC or FP 

 Resultant values computed for LOC or FP are entered into an 

estimation model 

 The empirical data for these models are derived from a limited 

sample of projects 

 Consequently, the models should be calibrated to reflect local 

software development conditions 

34 



COCOMO  

 Stands for COnstructive COst MOdel 

 Introduced by Barry Boehm in 1981 in his book “Software 
Engineering Economics” 

 Became one of the well-known and widely-used estimation 
models in the industry 

 It has evolved into a more comprehensive estimation model 
called COCOMO II 

 COCOMO II is actually a hierarchy of three estimation models  

 As with all estimation models, it requires sizing information and 
accepts it in three forms: object points, function points, and lines 
of source code 

 

 

35 

(More on next slide) 



COCOMO MODELS 

 Application composition model - Used during the early stages 
of software engineering when the following are important 

  Prototyping of user interfaces 

 Consideration of software and system interaction 

 Assessment of performance 

 Evaluation of technology maturity  

 Early design stage model – Used once requirements have 
been stabilized and basic software architecture has been 
established 

 Post-architecture stage model – Used during the construction 
of the software 

36 



COCOMO COST DRIVERS 

 Personnel Factors 
 Applications experience 

 Programming language experience 

 Virtual machine experience 

 Personnel capability 

 Personnel experience 

 Personnel continuity 

 Platform experience 

 Language and tool experience 

 Product Factors 
 Required software reliability 

 Database size 

 Software product complexity 

 Required reusability 

 Documentation match to life cycle needs 

 Product reliability and complexity 
37 

(More on next slide) 



COCOMO COST DRIVERS (CONTINUED) 

 Platform Factors 
 Execution time constraint 

 Main storage constraint 

 Computer turn-around time 

 Virtual machine volatility 

 Platform volatility 

 Platform difficulty 

 Project Factors 
 Use of software tools 

 Use of modern programming practices 

 Required development schedule 

 Classified security application 

 Multi-site development 

 Requirements volatility 

 38 



MAKE/BUY DECISION 

 It is often more cost effective to acquire rather than develop 
software 

 Managers have many acquisition options 

 Software may be purchased (or licensed) off the shelf 

 “Full-experience” or “partial-experience” software components may be 
acquired and integrated to meet specific needs 

 Software may be custom built by an outside contractor to meet the 
purchaser’s specifications 

 The make/buy decision can be made based on the following 
conditions 

 Will the software product be available sooner than internally developed 
software? 

 Will the cost of acquisition plus the cost of customization be less than 
the cost of developing the software internally? 

 Will the cost of outside support (e.g., a maintenance contract) be less 
than the cost of internal support? 

39 

 


