
SOFTWARE ENGINEERING

LECTURE-23

Configuration Management

TOPICS COVERED

• Software Configuration Management Basics

• Version Control

• Change Control

• Baseline Management

WHY IS SOFTWARE DIFFICULT TO BUILD?

 Lack of control

 Lack of monitoring

 Lack of traceability

 Uncontrolled changes

CONFLICTS IN TEAM SOFTWARE DEVELOPMENT

 Simultaneous updates – how to prevent one person

from undoing the changes of another

 Shared and common code – how to notify everyone

who needs to know about a change

 Versions – how to make changes to all affected

versions when needed

SOFTWARE CONFIGURATION MANAGEMENT

BASICS

 Identification – identifying software configuration
items in a baseline

Control – controlling the release of a product and
changes to it throughout its lifecycle

 Status Accounting – recording and reporting of
the status of components and changes

 Auditing and Reviewing – Validating the
completeness of a product and that SCM
procedures are being followed

SCM DEFINITIONS

Baseline – One or more software

configuration items that have been

formally reviewed and agreed upon and

serve as a basis for further development

Software Configuration Item – A collection

of software elements treated as a unit for

the purposes of SCM

Configuration – A collection of all the

elements of a baseline and a description of

how they fit together

SCM DEFINITIONS (CONT’D)

 Configuration Control Board – Group with the
responsibility for reviewing and approving changes to
baselines

 Software – All of the code, specifications, plans,
descriptions, processes, and documents associated
with a software development effort

 Version – A specific instance of a baseline or
configuration item

EXAMPLES OF CONFIGURATION ITEMS

 Product concept specification

 Software project plans

 Software requirements specifications

 Software design descriptions

 Source code

 Database descriptions

 SCM procedures

 Software release processes

 Software test documents

 User documentation

 Maintenance documentation

VERSION CONTROL

 Allows different projects to use the same source files
at the same time

 Isolates work that is not ready to be shared by the
rest of the project

 Isolates work that should never be shared

 Allows software engineers to continue development
along a branch even when a line of development is
frozen

CHANGE CONTROL

Proposed changes to baselines must have
some level of review

The impact of proposed changes must be
identified and understood.

When appropriate the approval of the CCB,
key managers and project members must be
obtained

Approved changes must be properly
implemented

After changes are made all affected parties
must be notified

BASELINE MANAGEMENT

 What baselines are required to be defined and

managed?

 Typically aligned with major milestones

 Applies to documents as well as code

 How is the current software configuration defined?

 A snapshot of everything the product has produced at

some point in time

BASELINE MANAGEMENT (CONT’D)

 Who must approve changes to baselines?

 Usually the Change Control Board (CCB)

 How and when are baselines created and physically

controlled?

 Through the use of document control systems, code

control tools, and procedures to prevent the making of

unapproved changes

BASELINE MANAGEMENT (CONT’D)

 How are people informed of changes?

 The CCB disseminates change information

 How are baselines verified?

 By reviews, inspections, and the testing of code

 Are baselines tied to project milestones?

 Many are, but during coding many may not be

BASELINE MANAGEMENT (CONT’D)

What information is required to process a
change to a baseline?
 A description of the proposed changes

 Reasons for making the changes

 List of other items affected by the changes

What tools, resources, and training are required
to perform baseline change assessment?
 File comparison tools to identify changes

 Resources and training depend on size and
complexity of project

BASELINE MANAGEMENT (CONT’D)

 How are unauthorized changes to source code

prevented, detected, and corrected?

 No way to prevent unauthorized changes

 Provide software engineers with training

 A commercial available SCM systems provide adequate

protection

 Unauthorized changes should be caught during

assessment procedures

BASELINE MANAGEMENT (CONT’D)

 What tools, resources, and training are required to

perform baseline management?

 A fully featured SCM tool

 On large projects a separate SCM group may be needed

 SCM training is required for all involved in the process

WORKSPACE MANAGEMENT

Software engineers need a consistent and

reproducible workspace area (a sandbox)

in which they can develop and debug their

code

They need to be able to share project files

while shielding the project from the

instability of their evolving code

SCM tools should provide such a

capability

BASELINE CHANGE ASSESSMENT

 Helps to identify recent changes that may be

responsible for problems

 Helps to ensure that only authorized changes are

made

VERSION MANAGEMENT

 Being able to reliably build and recreate versions of a

product as it evolves and after it is released.

 Being able to retreat to a previous version if

necessary

 Being able to recreate all versions of the product that

customers have

VERSION DERIVATION STRUCTURE

V1.0 V1.1 V1.2 V2.0 V2.1 V2.2

V1.1b V1.1.1

V1.1a

TYPES OF AUDITS

 In-process audits – verify the consistency of
the design as it evolves through the
development process

Functional audits – verify that functionality and
performance are consistent with requirements
defined in the SRS

Physical audits – verify that the as-built
version of software and documentation are
internally consistent and ready for delivery

Quality system audits – independent
assessment of the compliance to the software
QA plan

CONFIGURATION STATUS ACCOUNTING

REQUIREMENTS

 Identifying the types of information that project
managers need

 Identifying the degree of control needed by project
management

 Identifying the reports required and the different
audiences for each report

 Identifying the information required to produce each
report

SCM SUMMARY

Change is inevitable

Defined procedures are required to manage
change without preventing change

Software presents many challenges from a
control, management, and tracking
perspective

Knowing what you have and how you got
there is very important

Being able to recreate exactly what is
delivered to customers is essential

