
SOFTWARE ENGINEERING

LECTURE-19

Software Engineering Practice

TOPICS COVERED

- Software engineering practice

- Communication practices

- Planning practices

- Analysis modeling practices

- Design modeling practices

- Construction practices

- Deployment practices

SOFTWARE ENGINEERING PRACTICE

 Consists of a collection of concepts, principles, methods, and

tools that a software engineer calls upon on a daily basis

 Equips managers to manage software projects and software

engineers to build computer programs

 Provides necessary technical and management how to’s in

getting the job done

 Transforms a haphazard unfocused approach into something

that is more organized, more effective, and more likely to

achieve success

4

THE ESSENCE OF PROBLEM SOLVING

1) Understand the problem (communication and analysis)

• Who has a stake in the solution to the problem?

• What are the unknowns (data, function, behavior)?

• Can the problem be compartmentalized?

• Can the problem be represented graphically?

2) Plan a solution (planning, modeling and software design)

• Have you seen similar problems like this before?

• Has a similar problem been solved and is the solution reusable?

• Can subproblems be defined and are solutions available for the

subproblems?

5

(more on next slide)

THE ESSENCE OF PROBLEM SOLVING

(CONTINUED)

3) Carry out the plan (construction; code generation)

• Does the solution conform to the plan? Is the source code

traceable back to the design?

• Is each component of the solution correct? Has the design and

code been reviewed?

4) Examine the results for accuracy (testing and quality

assurance)

• Is it possible to test each component of the solution?

• Does the solution produce results that conform to the data,

function, and behavior that are required?

6

SEVEN CORE PRINCIPLES FOR

SOFTWARE ENGINEERING
1) Remember the reason that the software exists

• The software should provide value to its users and satisfy the requirements
2) Keep it simple, stupid (KISS)

• All design and implementation should be as simple as possible
3) Maintain the vision of the project

• A clear vision is essential to the project’s success
4) Others will consume what you produce

• Always specify, design, and implement knowing that someone else will later
have to understand and modify what you did

5) Be open to the future
• Never design yourself into a corner; build software that can be easily

changed and adapted
6) Plan ahead for software reuse

• Reuse of software reduces the long-term cost and increases the value of the
program and the reusable components

7) Think, then act
• Placing clear, complete thought before action will almost always produce

better results

7

COMMUNICATION PRACTICES

(REQUIREMENTS ELICITATION)

8

8

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

COMMUNICATION PRINCIPLES

1) Listen to the speaker and concentrate on what is being said

2) Prepare before you meet by researching and understanding the
problem

3) Someone should facility the meeting and have an agenda

4) Face-to-face communication is best, but also have a document or
presentation to focus the discussion

5) Take notes and document decisions

6) Strive for collaboration and consensus

7) Stay focused on a topic; modularize your discussion

8) If something is unclear, draw a picture

9) Move on to the next topic a) after you agree to something, b) if you
cannot agree to something, or c) if a feature or function is unclear
and cannot be clarified at the moment

10) Negotiation is not a contest or a game; it works best when both
parties win

9

PLANNING PRACTICES

(DEFINING A ROAD MAP)

10

10

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

PLANNING PRINCIPLES

1) Understand the scope of the project

2) Involve the customer in the planning activity

3) Recognize that planning is iterative; things will change

4) Estimate based only on what you know

5) Consider risk as you define the plan

6) Be realistic on how much can be done each day by each person
and how well

7) Adjust granularity as you define the plan

8) Define how you intend to ensure quality

9) Describe how you intend to accommodate change

10) Track the plan frequently and make adjustments as required

11

BARRY BOEHM’S W5HH PRINCIPLE

 Why is the system being developed?

 What will be done?

 When will it be accomplished?

 Who is responsible for each function?

 Where are they organizationally located?

 How will the job be done technically and managerially?

 How much of each resource is needed?

12

The answers to these questions lead to a definition of key

project characteristics and the resultant project plan

MODELING PRACTICES

(ANALYSIS AND DESIGN)

13

13

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

ANALYSIS MODELING PRINCIPLES

1) The information domain of a problem (the data that flows in and
out of a system) must be represented and understood

2) The functions that the software performs must be defined

3) The behavior of the software (as a consequence of external
events) must be represented

4) The models that depict information, function, and behavior must
be partitioned in a manner that uncovers detail in a layered (or
hierarchical) fashion

5) The analysis task should move from essential information toward
implementation detail

14

DESIGN MODELING PRINCIPLES
1) The design should be traceable to the analysis model

2) Always consider the software architecture of the system to be built

3) Design of data is as important as design of processing functions

4) Interfaces (both internal and external) must be designed with care

5) User interface design should be tuned to the needs of the end-user
and should stress ease of use

6) Component-level design should be functionally independent (high
cohesion)

7) Components should be loosely coupled to one another and to the
external environment

8) Design representations (models) should be easily understandable

9) The design should be developed iteratively; with each iteration, the
designer should strive for greater simplicity

15

External quality factors: those properties that can be readily observed

Internal quality factors: those properties that lead to a high-quality design from a technical

perspective

CONSTRUCTION PRACTICES

16

16

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

CODING PRINCIPLES
(PREPARATION BEFORE CODING)

1) Understand the problem you are trying to solve

2) Understand basic design principles and concepts

3) Pick a programming language that meets the needs of the
software to be built and the environment in which it will
operate

4) Select a programming environment that provides tools that
will make your work easier

5) Create a set of unit tests that will be applied once the
component you code is completed

17

CODING PRINCIPLES
(AS YOU BEGIN CODING)

1) Constrain your algorithms by following structured
programming practices

2) Select data structures that will meet the needs of the design

3) Understand the software architecture and create interfaces
that are consistent with it

4) Keep conditional logic as simple as possible

5) Create nested loops in a way that makes them easily
testable

6) Select meaningful variable names and follow other local
coding standards

7) Write code that is self-documenting

8) Create a visual layout (e.g., indentation and blank lines) that
aids code understanding

18

CODING PRINCIPLES
(AFTER COMPLETING THE FIRST ROUND OF

CODE)

1) Conduct a code walkthrough

2) Perform unit tests (black-box and white-box) and correct
errors you have uncovered

3) Refactor the code

19

TESTING PRINCIPLES

1) All tests should be traceable to the software requirements

2) Tests should be planned long before testing begins

3) The Pareto principle applies to software testing
• 80% of the uncovered errors are in 20% of the code

4) Testing should begin “in the small” and progress toward
testing “in the large”

• Unit testing --> integration testing --> validation testing -->
system testing

5) Exhaustive testing is not possible

20

TEST OBJECTIVES

1) Testing is a process of executing a program with the intent
of finding an error

2) A good test case is one that has a high probability of finding
an as-yet undiscovered error

3) A successful test is one that uncovers an as-yet
undiscovered error

21

DEPLOYMENT PRACTICES

22

22

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

DEPLOYMENT PRINCIPLES

1) Customer expectations for the software must be managed

• Be careful not to promise too much or to mislead the user

2) A complete delivery package should be assembled and tested

3) A support regime must be established before the software is
delivered

4) Appropriate instructional materials must be provided to end
users

5) Buggy software should be fixed first, delivered later

23

