
SOFTWARE ENGINEERING

LECTURE-18

Software Testing Strategies

TOPICS COVERED

- A strategic approach to testing

- Test strategies for conventional software

- Test strategies for object-oriented software

- Validation testing

- System testing

- The art of debugging

INTRODUCTION

 A strategy for software testing integrates the design of
software test cases into a well-planned series of steps that
result in successful development of the software

 The strategy provides a road map that describes the steps to
be taken, when, and how much effort, time, and resources will
be required

 The strategy incorporates test planning, test case design, test
execution, and test result collection and evaluation

 The strategy provides guidance for the practitioner and a set
of milestones for the manager

 Because of time pressures, progress must be measurable and
problems must surface as early as possible

4

A STRATEGIC APPROACH TO TESTING

GENERAL CHARACTERISTICS OF

STRATEGIC TESTING

 To perform effective testing, a software team should conduct

effective formal technical reviews

 Testing begins at the component level and work outward

toward the integration of the entire computer-based system

 Different testing techniques are appropriate at different points

in time

 Testing is conducted by the developer of the software and (for

large projects) by an independent test group

 Testing and debugging are different activities, but debugging

must be accommodated in any testing strategy

6

VERIFICATION AND VALIDATION

 Software testing is part of a broader group of activities called

verification and validation that are involved in software quality

assurance

 Verification (Are the algorithms coded correctly?)

 The set of activities that ensure that software correctly implements a

specific function or algorithm

 Validation (Does it meet user requirements?)

 The set of activities that ensure that the software that has been built is

traceable to customer requirements

7

ORGANIZING FOR SOFTWARE TESTING

 Testing should aim at "breaking" the software

 Common misconceptions

 The developer of software should do no testing at all

 The software should be given to a secret team of testers who will
test it unmercifully

 The testers get involved with the project only when the testing
steps are about to begin

 Reality: Independent test group

 Removes the inherent problems associated with letting the
builder test the software that has been built

 Removes the conflict of interest that may otherwise be present

 Works closely with the software developer during analysis and
design to ensure that thorough testing occurs

8

A STRATEGY FOR TESTING CONVENTIONAL

SOFTWARE

9

Code

Design

Requirements

System Engineering

Unit Testing

Integration Testing

Validation Testing

System Testing

LEVELS OF TESTING FOR CONVENTIONAL

SOFTWARE

 Unit testing

 Concentrates on each component/function of the software as

implemented in the source code

 Integration testing

 Focuses on the design and construction of the software

architecture

 Validation testing

 Requirements are validated against the constructed software

 System testing

 The software and other system elements are tested as a whole

10

TESTING STRATEGY APPLIED TO CONVENTIONAL

SOFTWARE

 Unit testing

 Exercises specific paths in a component's control structure to
ensure complete coverage and maximum error detection

 Components are then assembled and integrated

 Integration testing

 Focuses on inputs and outputs, and how well the components fit
together and work together

 Validation testing

 Provides final assurance that the software meets all functional,
behavioral, and performance requirements

 System testing

 Verifies that all system elements (software, hardware, people,
databases) mesh properly and that overall system function and
performance is achieved

11

TESTING STRATEGY APPLIED TO OBJECT-

ORIENTED SOFTWARE

 Must broaden testing to include detections of errors in analysis and
design models

 Unit testing loses some of its meaning and integration testing
changes significantly

 Use the same philosophy but different approach as in conventional
software testing

 Test "in the small" and then work out to testing "in the large"

 Testing in the small involves class attributes and operations; the main
focus is on communication and collaboration within the class

 Testing in the large involves a series of regression tests to uncover errors
due to communication and collaboration among classes

 Finally, the system as a whole is tested to detect errors in fulfilling
requirements

12

WHEN IS TESTING COMPLETE?

 There is no definitive answer to this question

 Every time a user executes the software, the program is being

tested

 Sadly, testing usually stops when a project is running out of

time, money, or both

 One approach is to divide the test results into various severity

levels

 Then consider testing to be complete when certain levels of

errors no longer occur or have been repaired or eliminated

13

ENSURING A SUCCESSFUL SOFTWARE TEST

STRATEGY

 Specify product requirements in a quantifiable manner long before
testing commences

 State testing objectives explicitly in measurable terms
 Understand the user of the software (through use cases) and

develop a profile for each user category
 Develop a testing plan that emphasizes rapid cycle testing to get

quick feedback to control quality levels and adjust the test strategy
 Build robust software that is designed to test itself and can diagnose

certain kinds of errors
 Use effective formal technical reviews as a filter prior to testing to

reduce the amount of testing required
 Conduct formal technical reviews to assess the test strategy and

test cases themselves
 Develop a continuous improvement approach for the testing

process through the gathering of metrics

14

TEST STRATEGIES FOR

CONVENTIONAL SOFTWARE

UNIT TESTING

 Focuses testing on the function or software module

 Concentrates on the internal processing logic and data structures

 Is simplified when a module is designed with high cohesion

 Reduces the number of test cases

 Allows errors to be more easily predicted and uncovered

 Concentrates on critical modules and those with high cyclomatic
complexity when testing resources are limited

16

TARGETS FOR UNIT TEST CASES

 Module interface
 Ensure that information flows properly into and out of the module

 Local data structures
 Ensure that data stored temporarily maintains its integrity during

all steps in an algorithm execution

 Boundary conditions
 Ensure that the module operates properly at boundary values

established to limit or restrict processing

 Independent paths (basis paths)
 Paths are exercised to ensure that all statements in a module

have been executed at least once

 Error handling paths
 Ensure that the algorithms respond correctly to specific error

conditions

17

COMMON COMPUTATIONAL ERRORS IN

EXECUTION PATHS

 Misunderstood or incorrect arithmetic precedence

 Mixed mode operations (e.g., int, float, char)

 Incorrect initialization of values

 Precision inaccuracy and round-off errors

 Incorrect symbolic representation of an expression (int vs. float)

18

OTHER ERRORS TO UNCOVER

 Comparison of different data types

 Incorrect logical operators or precedence

 Expectation of equality when precision error makes equality
unlikely (using == with float types)

 Incorrect comparison of variables

 Improper or nonexistent loop termination

 Failure to exit when divergent iteration is encountered

 Improperly modified loop variables

 Boundary value violations

19

PROBLEMS TO UNCOVER IN

ERROR HANDLING

 Error description is unintelligible or ambiguous

 Error noted does not correspond to error encountered

 Error condition causes operating system intervention prior to
error handling

 Exception condition processing is incorrect

 Error description does not provide enough information to
assist in the location of the cause of the error

20

DRIVERS AND STUBS FOR

UNIT TESTING

 Driver

 A simple main program that accepts test case data, passes such
data to the component being tested, and prints the returned results

 Stubs

 Serve to replace modules that are subordinate to (called by) the
component to be tested

 It uses the module’s exact interface, may do minimal data
manipulation, provides verification of entry, and returns control to the
module undergoing testing

 Drivers and stubs both represent overhead

 Both must be written but don’t constitute part of the installed
software product

21

INTEGRATION TESTING

 Defined as a systematic technique for constructing the

software architecture

 At the same time integration is occurring, conduct tests to

uncover errors associated with interfaces

 Objective is to take unit tested modules and build a program

structure based on the prescribed design

 Two Approaches

 Non-incremental Integration Testing

 Incremental Integration Testing

22

NON-INCREMENTAL

INTEGRATION TESTING

 Commonly called the “Big Bang” approach

 All components are combined in advance

 The entire program is tested as a whole

 Chaos results

 Many seemingly-unrelated errors are encountered

 Correction is difficult because isolation of causes is complicated

 Once a set of errors are corrected, more errors occur, and testing

appears to enter an endless loop

23

INCREMENTAL INTEGRATION TESTING

 Three kinds

 Top-down integration

 Bottom-up integration

 Sandwich integration

 The program is constructed and tested in small increments

 Errors are easier to isolate and correct

 Interfaces are more likely to be tested completely

 A systematic test approach is applied

24

TOP-DOWN INTEGRATION

 Modules are integrated by moving downward through the
control hierarchy, beginning with the main module

 Subordinate modules are incorporated in either a depth-first or
breadth-first fashion
 DF: All modules on a major control path are integrated

 BF: All modules directly subordinate at each level are integrated

 Advantages
 This approach verifies major control or decision points early in the

test process

 Disadvantages
 Stubs need to be created to substitute for modules that have not

been built or tested yet; this code is later discarded

 Because stubs are used to replace lower level modules, no
significant data flow can occur until much later in the
integration/testing process

25

BOTTOM-UP INTEGRATION

 Integration and testing starts with the most atomic modules in
the control hierarchy

 Advantages
 This approach verifies low-level data processing early in the

testing process

 Need for stubs is eliminated

 Disadvantages
 Driver modules need to be built to test the lower-level modules;

this code is later discarded or expanded into a full-featured
version

 Drivers inherently do not contain the complete algorithms that will
eventually use the services of the lower-level modules;
consequently, testing may be incomplete or more testing may be
needed later when the upper level modules are available

26

SANDWICH INTEGRATION

 Consists of a combination of both top-down and bottom-up
integration

 Occurs both at the highest level modules and also at the
lowest level modules

 Proceeds using functional groups of modules, with each group
completed before the next
 High and low-level modules are grouped based on the control

and data processing they provide for a specific program feature

 Integration within the group progresses in alternating steps
between the high and low level modules of the group

 When integration for a certain functional group is complete,
integration and testing moves onto the next group

 Reaps the advantages of both types of integration while
minimizing the need for drivers and stubs

 Requires a disciplined approach so that integration doesn’t
tend towards the “big bang” scenario

27

REGRESSION TESTING

 Each new addition or change to baselined software may
cause problems with functions that previously worked
flawlessly

 Regression testing re-executes a small subset of tests that
have already been conducted
 Ensures that changes have not propagated unintended side

effects

 Helps to ensure that changes do not introduce unintended
behavior or additional errors

 May be done manually or through the use of automated
capture/playback tools

 Regression test suite contains three different classes of test
cases
 A representative sample of tests that will exercise all software

functions

 Additional tests that focus on software functions that are likely to
be affected by the change

 Tests that focus on the actual software components that have
been changed

28

SMOKE TESTING
 Taken from the world of hardware

 Power is applied and a technician checks for sparks, smoke, or
other dramatic signs of fundamental failure

 Designed as a pacing mechanism for time-critical projects
 Allows the software team to assess its project on a frequent basis

 Includes the following activities
 The software is compiled and linked into a build

 A series of breadth tests is designed to expose errors that will keep
the build from properly performing its function
 The goal is to uncover “show stopper” errors that have the highest

likelihood of throwing the software project behind schedule

 The build is integrated with other builds and the entire product is
smoke tested daily
 Daily testing gives managers and practitioners a realistic assessment of

the progress of the integration testing

 After a smoke test is completed, detailed test scripts are executed

29

BENEFITS OF SMOKE TESTING
 Integration risk is minimized

 Daily testing uncovers incompatibilities and show-stoppers early in
the testing process, thereby reducing schedule impact

 The quality of the end-product is improved
 Smoke testing is likely to uncover both functional errors and

architectural and component-level design errors

 Error diagnosis and correction are simplified
 Smoke testing will probably uncover errors in the newest

components that were integrated

 Progress is easier to assess
 As integration testing progresses, more software has been

integrated and more has been demonstrated to work

 Managers get a good indication that progress is being made

30

TEST STRATEGIES FOR

OBJECT-ORIENTED SOFTWARE

TEST STRATEGIES FOR

OBJECT-ORIENTED SOFTWARE

 With object-oriented software, you can no longer test a single
operation in isolation (conventional thinking)

 Traditional top-down or bottom-up integration testing has little
meaning

 Class testing for object-oriented software is the equivalent of unit
testing for conventional software
 Focuses on operations encapsulated by the class and the state behavior

of the class

 Drivers can be used
 To test operations at the lowest level and for testing whole groups of

classes

 To replace the user interface so that tests of system functionality can be
conducted prior to implementation of the actual interface

 Stubs can be used
 In situations in which collaboration between classes is required but one

or more of the collaborating classes has not yet been fully implemented

32

TEST STRATEGIES FOR OBJECT-ORIENTED

SOFTWARE (CONTINUED)

 Two different object-oriented testing strategies

 Thread-based testing

 Integrates the set of classes required to respond to one input or event

for the system

 Each thread is integrated and tested individually

 Regression testing is applied to ensure that no side effects occur

 Use-based testing

 First tests the independent classes that use very few, if any, server

classes

 Then the next layer of classes, called dependent classes, are

integrated

 This sequence of testing layer of dependent classes continues until the

entire system is constructed

33

VALIDATION TESTING

BACKGROUND
 Validation testing follows integration testing

 The distinction between conventional and object-oriented software
disappears

 Focuses on user-visible actions and user-recognizable output from the
system

 Demonstrates conformity with requirements

 Designed to ensure that
 All functional requirements are satisfied

 All behavioral characteristics are achieved

 All performance requirements are attained

 Documentation is correct

 Usability and other requirements are met (e.g., transportability, compatibility,
error recovery, maintainability)

 After each validation test
 The function or performance characteristic conforms to specification and is

accepted

 A deviation from specification is uncovered and a deficiency list is created

 A configuration review or audit ensures that all elements of the software
configuration have been properly developed, cataloged, and have the
necessary detail for entering the support phase of the software life cycle

35

ALPHA AND BETA TESTING

 Alpha testing
 Conducted at the developer’s site by end users

 Software is used in a natural setting with developers watching
intently

 Testing is conducted in a controlled environment

 Beta testing
 Conducted at end-user sites

 Developer is generally not present

 It serves as a live application of the software in an environment
that cannot be controlled by the developer

 The end-user records all problems that are encountered and
reports these to the developers at regular intervals

 After beta testing is complete, software engineers make
software modifications and prepare for release of the software
product to the entire customer base

36

SYSTEM TESTING

DIFFERENT TYPES
 Recovery testing

 Tests for recovery from system faults

 Forces the software to fail in a variety of ways and verifies that
recovery is properly performed

 Tests reinitialization, checkpointing mechanisms, data recovery, and
restart for correctness

 Security testing
 Verifies that protection mechanisms built into a system will, in fact,

protect it from improper access

 Stress testing
 Executes a system in a manner that demands resources in

abnormal quantity, frequency, or volume

 Performance testing
 Tests the run-time performance of software within the context of an

integrated system

 Often coupled with stress testing and usually requires both hardware
and software instrumentation

 Can uncover situations that lead to degradation and possible system
failure 38

THE ART OF DEBUGGING

DEBUGGING PROCESS

 Debugging occurs as a consequence of successful testing

 It is still very much an art rather than a science

 Good debugging ability may be an innate human trait

 Large variances in debugging ability exist

 The debugging process begins with the execution of a test case

 Results are assessed and the difference between expected and actual
performance is encountered

 This difference is a symptom of an underlying cause that lies hidden

 The debugging process attempts to match symptom with cause, thereby
leading to error correction

40

WHY IS DEBUGGING SO DIFFICULT?

 The symptom and the cause may be geographically remote

 The symptom may disappear (temporarily) when another error is

corrected

 The symptom may actually be caused by nonerrors (e.g., round-

off accuracies)

 The symptom may be caused by human error that is not easily

traced

41

(continued on next slide)

WHY IS DEBUGGING SO DIFFICULT?

(CONTINUED)

 The symptom may be a result of timing problems, rather than

processing problems

 It may be difficult to accurately reproduce input conditions, such as

asynchronous real-time information

 The symptom may be intermittent such as in embedded systems

involving both hardware and software

 The symptom may be due to causes that are distributed across a

number of tasks running on different processes

42

DEBUGGING STRATEGIES

 Objective of debugging is to find and correct the cause of a
software error

 Bugs are found by a combination of systematic evaluation,
intuition, and luck

 Debugging methods and tools are not a substitute for careful
evaluation based on a complete design model and clear
source code

 There are three main debugging strategies

 Brute force

 Backtracking

 Cause elimination

43

STRATEGY #1: BRUTE FORCE

 Most commonly used and least efficient method

 Used when all else fails

 Involves the use of memory dumps, run-time traces, and

output statements

 Leads many times to wasted effort and time

44

STRATEGY #2: BACKTRACKING

 Can be used successfully in small programs

 The method starts at the location where a symptom has been

uncovered

 The source code is then traced backward (manually) until the

location of the cause is found

 In large programs, the number of potential backward paths

may become unmanageably large

45

STRATEGY #3: CAUSE ELIMINATION

 Involves the use of induction or deduction and introduces the
concept of binary partitioning
 Induction (specific to general): Prove that a specific starting value is true;

then prove the general case is true

 Deduction (general to specific): Show that a specific conclusion follows
from a set of general premises

 Data related to the error occurrence are organized to isolate potential
causes

 A cause hypothesis is devised, and the aforementioned data are
used to prove or disprove the hypothesis

 Alternatively, a list of all possible causes is developed, and tests are
conducted to eliminate each cause

 If initial tests indicate that a particular cause hypothesis shows
promise, data are refined in an attempt to isolate the bug

46

THREE QUESTIONS TO ASK BEFORE

CORRECTING THE ERROR

 Is the cause of the bug reproduced in another part of the program?
 Similar errors may be occurring in other parts of the program

 What next bug might be introduced by the fix that I’m about to
make?

 The source code (and even the design) should be studied to assess the
coupling of logic and data structures related to the fix

 What could we have done to prevent this bug in the first place?

 This is the first step toward software quality assurance

 By correcting the process as well as the product, the bug will be
removed from the current program and may be eliminated from all future
programs

47



