
SOFTWARE ENGINEERING

LECTURE-9

 Prescriptive Process Models

TOPICS COVERED

 - Generic process framework (revisited)

- Traditional process models

- Specialized process models

- The unified process

4

GENERIC PROCESS FRAMEWORK

 Communication

 Involves communication among the customer and other stake holders;
encompasses requirements gathering

 Planning

 Establishes a plan for software engineering work; addresses technical tasks,
resources, work products, and work schedule

 Modeling (Analyze, Design)

 Encompasses the creation of models to better under the requirements and
the design

 Construction (Code, Test)

 Combines code generation and testing to uncover errors

 Deployment

 Involves delivery of software to the customer for evaluation and feedback

MODELING: SOFTWARE REQUIREMENTS
ANALYSIS

 Helps software engineers to better understand the problem they
will work to solve

 Encompasses the set of tasks that lead to an understanding of
what the business impact of the software will be, what the
customer wants, and how end-users will interact with the
software

 Uses a combination of text and diagrams to depict requirements
for data, function, and behavior

 Provides a relatively easy way to understand and review
requirements for correctness, completeness and consistency

6

MODELING: SOFTWARE DESIGN
 Brings together customer requirements, business needs, and technical

considerations to form the “blueprint” for a product

 Creates a model that that provides detail about software data structures,
software architecture, interfaces, and components that are necessary to
implement the system

 Architectural design
 Represents the structure of data and program components that are required

to build the software

 Considers the architectural style, the structure and properties of components
that constitute the system, and interrelationships that occur among all
architectural components

 User Interface Design
 Creates an effective communication medium between a human and a

computer

 Identifies interface objects and actions and then creates a screen layout that
forms the basis for a user interface prototype

 Component-level Design
 Defines the data structures, algorithms, interface characteristics, and

communication mechanisms allocated to each software component

TRADITIONAL PROCESS MODELS

8

PRESCRIPTIVE PROCESS MODEL

 Defines a distinct set of activities, actions, tasks, milestones, and
work products that are required to engineer high-quality software

 The activities may be linear, incremental, or evolutionary

9

WATERFALL MODEL
(DIAGRAM)

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

10

WATERFALL MODEL
(DESCRIPTION)

 Oldest software lifecycle model and best understood by upper
management

 Used when requirements are well understood and risk is low

 Work flow is in a linear (i.e., sequential) fashion

 Used often with well-defined adaptations or enhancements to current

software

11

WATERFALL MODEL
(PROBLEMS)

 Doesn't support iteration, so changes can cause confusion

 Difficult for customers to state all requirements explicitly and up front

 Requires customer patience because a working version of the
program doesn't occur until the final phase

 Problems can be somewhat alleviated in the model through the
addition of feedback loops (see the next slide)

12

WATERFALL MODEL WITH FEEDBACK
(DIAGRAM)

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

13

INCREMENTAL MODEL
(DIAGRAM)

Communication
Planning

Modeling
Construction

Deployment

Communication
Planning

Modeling
Construction

Deployment

Communication
Planning

Modeling
Construction

Deployment

Increment #1

Increment #2

Increment #3

14

INCREMENTAL MODEL
(DESCRIPTION)

 Used when requirements are well understood

 Multiple independent deliveries are identified

 Work flow is in a linear (i.e., sequential) fashion within an increment

and is staggered between increments

 Iterative in nature; focuses on an operational product with each

increment

 Provides a needed set of functionality sooner while delivering optional

components later

 Useful also when staffing is too short for a full-scale development

15

PROTOTYPING MODEL
(DIAGRAM)

Communication

Quick

Planning

Modeling

Quick Design

Construction

Of Prototype

Deployment,

Delivery,

and Feedback

Start

16

PROTOTYPING MODEL
(DESCRIPTION)

 Follows an evolutionary and iterative approach

 Used when requirements are not well understood

 Serves as a mechanism for identifying software requirements

 Focuses on those aspects of the software that are visible to the

customer/user

 Feedback is used to refine the prototype

17

PROTOTYPING MODEL
(POTENTIAL PROBLEMS)

 The customer sees a "working version" of the software, wants to stop
all development and then buy the prototype after a "few fixes" are
made

 Developers often make implementation compromises to get the
software running quickly (e.g., language choice, user interface,
operating system choice, inefficient algorithms)

 Lesson learned

 Define the rules up front on the final disposition of the prototype before it is
built

 In most circumstances, plan to discard the prototype and engineer the
actual production software with a goal toward quality

18

SPIRAL MODEL
(DIAGRAM)

Start

Start

Communication

Planning

Modeling

Construction Deployment

19

SPIRAL MODEL
(DESCRIPTION)

 Invented by Dr. Barry Boehm in 1988 while working at TRW

 Follows an evolutionary approach

 Used when requirements are not well understood and risks are high

 Inner spirals focus on identifying software requirements and project risks;
may also incorporate prototyping

 Outer spirals take on a classical waterfall approach after requirements
have been defined, but permit iterative growth of the software

 Operates as a risk-driven model…a go/no-go decision occurs after each
complete spiral in order to react to risk determinations

 Requires considerable expertise in risk assessment

 Serves as a realistic model for large-scale software development

20

GENERAL WEAKNESSES OF EVOLUTIONARY
PROCESS MODELS

1) Prototyping poses a problem to project planning because of the
uncertain number of iterations required to construct the product

2) Evolutionary software processes do not establish the maximum
speed of the evolution

• If too fast, the process will fall into chaos

• If too slow, productivity could be affected

3) Software processes should focus first on flexibility and
extensibility, and second on high quality

• We should prioritize the speed of the development over zero defects

• Extending the development in order to reach higher quality could
result in late delivery

SPECIALIZED PROCESS MODELS

22

COMPONENT-BASED DEVELOPMENT
MODEL

 Consists of the following process steps

 Available component-based products are researched and evaluated
for the application domain in question

 Component integration issues are considered

 A software architecture is designed to accommodate the
components

 Components are integrated into the architecture

 Comprehensive testing is conducted to ensure proper functionality

 Relies on a robust component library

 Capitalizes on software reuse, which leads to documented
savings in project cost and time

23

FORMAL METHODS MODEL
(DESCRIPTION)

 Encompasses a set of activities that leads to formal
mathematical specification of computer software

 Enables a software engineer to specify, develop, and verify a

computer-based system by applying a rigorous, mathematical

notation

 Ambiguity, incompleteness, and inconsistency can be discovered

and corrected more easily through mathematical analysis

 Offers the promise of defect-free software

 Used often when building safety-critical systems

24

FORMAL METHODS MODEL
(CHALLENGES)

 Development of formal methods is currently quite time-
consuming and expensive

 Because few software developers have the necessary

background to apply formal methods, extensive training is

required

 It is difficult to use the models as a communication mechanism

for technically unsophisticated customers

THE UNIFIED PROCESS

26

BACKGROUND

 Birthed during the late 1980's and early 1990s when object-
oriented languages were gaining wide-spread use

 Many object-oriented analysis and design methods were
proposed; three top authors were Grady Booch, Ivar Jacobson,
and James Rumbaugh

 They eventually worked together on a unified method, called the
Unified Modeling Language (UML)

 UML is a robust notation for the modeling and development of
object-oriented systems

 UML became an industry standard in 1997

 However, UML does not provide the process framework, only the
necessary technology for object-oriented development

27

BACKGROUND (CONTINUED)

 Booch, Jacobson, and Rumbaugh later developed the unified
process, which is a framework for object-oriented software
engineering using UML

 Draws on the best features and characteristics of conventional
software process models

 Emphasizes the important role of software architecture

 Consists of a process flow that is iterative and incremental, thereby
providing an evolutionary feel

 Consists of five phases: inception, elaboration, construction,
transition, and production

28

PHASES OF THE UNIFIED PROCESS

communication

planning

modeling

construction

deployment

Inception Elaboration

Construction

Transition Production

29

INCEPTION PHASE

 Encompasses both customer communication and planning activities
of the generic process

 Business requirements for the software are identified

 A rough architecture for the system is proposed

 A plan is created for an incremental, iterative development

 Fundamental business requirements are described through

preliminary use cases

 A use case describes a sequence of actions that are performed by a user

30

ELABORATION PHASE

 Encompasses both the planning and modeling activities of the generic
process

 Refines and expands the preliminary use cases

 Expands the architectural representation to include five views

 Use-case model

 Analysis model

 Design model

 Implementation model

 Deployment model

 Often results in an executable architectural baseline that represents a first
cut executable system

 The baseline demonstrates the viability of the architecture but does not
provide all features and functions required to use the system

31

CONSTRUCTION PHASE

 Encompasses the construction activity of the generic process

 Uses the architectural model from the elaboration phase as input

 Develops or acquires the software components that make each use-case

operational

 Analysis and design models from the previous phase are completed to

reflect the final version of the increment

 Use cases are used to derive a set of acceptance tests that are executed

prior to the next phase

32

TRANSITION PHASE

 Encompasses the last part of the construction activity and the first part of
the deployment activity of the generic process

 Software is given to end users for beta testing and user feedback reports

on defects and necessary changes

 The software teams create necessary support documentation (user

manuals, trouble-shooting guides, installation procedures)

 At the conclusion of this phase, the software increment becomes a usable

software release

33

PRODUCTION PHASE

 Encompasses the last part of the deployment activity of the generic
process

 On-going use of the software is monitored

 Support for the operating environment (infrastructure) is provided

 Defect reports and requests for changes are submitted and evaluated

34

UNIFIED PROCESS WORK PRODUCTS

 Work products are produced in each of the first four phases of
the unified process

 In this course, we will concentrate on the analysis model and the
design model work products

 Analysis model includes

 Scenario-based model, class-based model, and behavioral model

 Design model includes

 Component-level design, interface design, architectural design, and
data/class design



