
SOFTWARE ENGINEERING 



LECTURE-9 

          Prescriptive Process Models 



TOPICS COVERED 
 
 
   - Generic process framework (revisited) 

- Traditional process models 

- Specialized process models 

- The unified process 
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GENERIC PROCESS FRAMEWORK 

 Communication 

 Involves communication among the customer and other stake holders; 
encompasses requirements gathering 

 Planning 

 Establishes a plan for software engineering work; addresses technical tasks, 
resources, work products, and work schedule 

 Modeling (Analyze, Design) 

 Encompasses the creation of models to better under the requirements and 
the design 

 Construction (Code, Test) 

 Combines code generation and testing to uncover errors 

 Deployment 

 Involves delivery of software to the customer for evaluation and feedback 



MODELING: SOFTWARE REQUIREMENTS 
ANALYSIS 

 Helps software engineers to better understand the problem they 
will work to solve 

 Encompasses the set of tasks that lead to an understanding of 
what the business impact of the software will be, what the 
customer wants, and how end-users will interact with the 
software 

 Uses a combination of text and diagrams to depict requirements 
for data, function, and behavior 

 Provides a relatively easy way to understand and review 
requirements for correctness, completeness and consistency 
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MODELING: SOFTWARE DESIGN 
 Brings together customer requirements, business needs, and technical 

considerations to form the “blueprint” for a product 

 Creates a model that that provides detail about software data structures, 
software architecture, interfaces, and components that are necessary to 
implement the system 

 Architectural design  
 Represents the structure of data and program components that are required 

to build the software 

 Considers the architectural style, the structure and properties of components 
that constitute the system, and interrelationships that occur among all 
architectural components 

 User Interface Design 
 Creates an effective communication medium between a human and a 

computer 

 Identifies interface objects and actions and then creates a screen layout that 
forms the basis for a user interface prototype 

 Component-level Design 
 Defines the data structures, algorithms, interface characteristics, and 

communication mechanisms allocated to each software component 

 

 

 



TRADITIONAL PROCESS MODELS 
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PRESCRIPTIVE PROCESS MODEL 

 Defines a distinct set of activities, actions, tasks, milestones, and 
work products that are required to engineer high-quality software 

 The activities may be linear, incremental, or evolutionary  
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WATERFALL MODEL 
(DIAGRAM) 
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WATERFALL MODEL 
(DESCRIPTION) 

 Oldest software lifecycle model and best understood by upper 
management 

 Used when requirements are well understood and risk is low 

 Work flow is in a linear (i.e., sequential) fashion 

 Used often with well-defined adaptations or enhancements to current 

software 
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WATERFALL MODEL 
(PROBLEMS) 

 Doesn't support iteration, so changes can cause confusion 

 Difficult for customers to state all requirements explicitly and up front 

 Requires customer patience because a working version of the 
program doesn't occur until the final phase 

 Problems can be somewhat alleviated in the model through the 
addition of feedback loops (see the next slide) 
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WATERFALL MODEL WITH FEEDBACK 
(DIAGRAM) 
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INCREMENTAL MODEL 
(DIAGRAM) 
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INCREMENTAL MODEL 
(DESCRIPTION) 

 Used when requirements are well understood 

 Multiple independent deliveries are identified 

 Work flow is in a linear (i.e., sequential) fashion within an increment 

and is staggered between increments 

 Iterative in nature; focuses on an operational product with each 

increment 

 Provides a needed set of functionality sooner while delivering optional 

components later 

 Useful also when staffing is too short for a full-scale development 
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PROTOTYPING MODEL 
(DIAGRAM) 
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PROTOTYPING MODEL 
(DESCRIPTION) 

 Follows an evolutionary and iterative approach 

 Used when requirements are not well understood 

 Serves as a mechanism for identifying software requirements 

 Focuses on those aspects of the software that are visible to the 

customer/user 

 Feedback is used to refine the prototype 
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PROTOTYPING MODEL 
(POTENTIAL PROBLEMS) 

 The customer sees a "working version" of the software, wants to stop 
all development and then buy the prototype after a "few fixes" are 
made 

 Developers often make implementation compromises to get the 
software running quickly (e.g., language choice, user interface, 
operating system choice, inefficient algorithms) 

 Lesson learned 

 Define the rules up front on the final disposition of the prototype before it is 
built 

 In most circumstances, plan to discard the prototype and engineer the 
actual production software with a goal toward quality 
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SPIRAL MODEL 
(DIAGRAM) 
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SPIRAL MODEL 
(DESCRIPTION) 

 Invented by Dr. Barry Boehm in 1988 while working at TRW 

 Follows an evolutionary approach 

 Used when requirements are not well understood and risks are high 

 Inner spirals focus on identifying software requirements and project risks; 
may also incorporate prototyping 

 Outer spirals take on a classical waterfall approach after requirements 
have been defined, but permit iterative growth of the software 

 Operates as a risk-driven model…a go/no-go decision occurs after each 
complete spiral in order to react to risk determinations 

 Requires considerable expertise in risk assessment 

 Serves as a realistic model for large-scale software development 
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GENERAL WEAKNESSES OF EVOLUTIONARY 
PROCESS MODELS 

1) Prototyping poses a problem to project planning because of the 
uncertain number of iterations required to construct the product 

2) Evolutionary software processes do not establish the maximum 
speed of the evolution 

• If too fast, the process will fall into chaos 

• If too slow, productivity could be affected 

3) Software processes should focus first on flexibility and 
extensibility, and second on high quality 

• We should prioritize the speed of the development over zero defects 

• Extending the development in order to reach higher quality could 
result in late delivery 



SPECIALIZED PROCESS MODELS 
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COMPONENT-BASED DEVELOPMENT 
MODEL 

 Consists of the following process steps 

 Available component-based products are researched and evaluated 
for the application domain in question 

 Component integration issues are considered 

 A software architecture is designed to accommodate the 
components 

 Components are integrated into the architecture 

 Comprehensive testing is conducted to ensure proper functionality 

 Relies on a robust component library 

 Capitalizes on software reuse, which leads to documented 
savings in project cost and time 
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FORMAL METHODS MODEL 
(DESCRIPTION) 

 Encompasses a set of activities that leads to formal 
mathematical specification of computer software 

 Enables a software engineer to specify, develop, and verify a 

computer-based system by applying a rigorous, mathematical 

notation 

 Ambiguity, incompleteness, and inconsistency can be discovered 

and corrected more easily through mathematical analysis 

 Offers the promise of defect-free software 

 Used often when building safety-critical systems 
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FORMAL METHODS MODEL 
(CHALLENGES) 

 Development of formal methods is currently quite time-
consuming and expensive 

 Because few software developers have the necessary 

background to apply formal methods, extensive training is 

required 

 It is difficult to use the models as a communication mechanism 

for technically unsophisticated customers 



THE UNIFIED PROCESS 
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BACKGROUND 

 Birthed during the late 1980's and early 1990s when object-
oriented languages were gaining wide-spread use 

 Many object-oriented analysis and design methods were 
proposed; three top authors were Grady Booch, Ivar Jacobson, 
and James Rumbaugh 

 They eventually worked together on a unified method, called the 
Unified Modeling Language (UML) 

 UML is a robust notation for the modeling and development of 
object-oriented systems 

 UML became an industry standard in 1997 

 However, UML does not provide the process framework, only the 
necessary technology for object-oriented development 
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BACKGROUND (CONTINUED) 

 Booch, Jacobson, and Rumbaugh later developed the unified 
process, which is a framework for object-oriented software 
engineering using UML 

 Draws on the best features and characteristics of conventional 
software process models 

 Emphasizes the important role of software architecture 

 Consists of a process flow that is iterative and incremental, thereby 
providing an evolutionary feel 

 Consists of five phases: inception, elaboration, construction, 
transition, and production 
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PHASES OF THE UNIFIED PROCESS 
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INCEPTION PHASE 

 Encompasses both customer communication and planning activities 
of the generic process 

 Business requirements for the software are identified 

 A rough architecture for the system is proposed 

 A plan is created for an incremental, iterative development 

 Fundamental business requirements are described through 

preliminary use cases 

 A use case describes a sequence of actions that are performed by a user 
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ELABORATION PHASE 

 Encompasses both the planning and modeling activities of the generic 
process 

 Refines and expands the preliminary use cases 

 Expands the architectural representation to include five views 

 Use-case model 

 Analysis model 

 Design model 

 Implementation model 

 Deployment model 

 Often results in an executable architectural baseline that represents a first 
cut executable system 

 The baseline demonstrates the viability of the architecture but does not 
provide all features and functions required to use the system 
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CONSTRUCTION PHASE 

 Encompasses the construction activity of the generic process 

 Uses the architectural model from the elaboration phase as input 

 Develops or acquires the software components that make each use-case 

operational 

 Analysis and design models from the previous phase are completed to 

reflect the final version of the increment 

 Use cases are used to derive a set of acceptance tests that are executed 

prior to the next phase 
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TRANSITION PHASE 

 Encompasses the last part of the construction activity and the first part of 
the deployment activity of the generic process 

 Software is given to end users for beta testing and user feedback reports 

on defects and necessary changes 

 The software teams create necessary support documentation (user 

manuals, trouble-shooting guides, installation procedures) 

 At the conclusion of this phase, the software increment becomes a usable 

software release 
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PRODUCTION PHASE 

 Encompasses the last part of the deployment activity of the generic 
process 

 On-going use of the software is monitored 

 Support for the operating environment (infrastructure) is provided 

 Defect reports and requests for changes are submitted and evaluated  
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UNIFIED PROCESS WORK PRODUCTS 

 Work products are produced in each of the first four phases of 
the unified process 

 In this course, we will concentrate on the analysis model and the 
design model work products 

 Analysis model includes 

 Scenario-based model, class-based model, and behavioral model 

 Design model includes 

 Component-level design, interface design, architectural design, and 
data/class design 

 

 


