
SOFTWARE ENGINEERING

LECTURE-8
Project Planning

ESTIMATION FOR SOFTWARE

PROJECTS

- Project planning

- Scope and feasibility

- Project resources

- Estimation of project cost and effort

- Decomposition techniques

- Empirical estimation models

SOFTWARE PROJECT PLANNING
 Software project planning encompasses five major activities

 Estimation, scheduling, risk analysis, quality management planning,
and change management planning

 Estimation determines how much money, effort, resources, and
time it will take to build a specific system or product

 The software team first estimates

 The work to be done

 The resources required

 The time that will elapse from start to finish

 Then they establish a project schedule that

 Defines tasks and milestones

 Identifies who is responsible for conducting each task

 Specifies the inter-task dependencies

OBSERVATIONS ON ESTIMATION

 Planning requires technical managers and the software team to

make an initial commitment

 Process and project metrics can provide a historical perspective

and valuable input for generation of quantitative estimates

 Past experience can aid greatly

 Estimation carries inherent risk, and this risk leads to uncertainty

 The availability of historical information has a strong influence on

estimation risk

(More on next slide)

OBSERVATIONS ON ESTIMATION (CONTINUED)

 When software metrics are available from past projects

 Estimates can be made with greater assurance

 Schedules can be established to avoid past difficulties

 Overall risk is reduced

 Estimation risk is measured by the degree of uncertainty in the

quantitative estimates for cost, schedule, and resources

 Nevertheless, a project manager should not become obsessive

about estimation

 Plans should be iterative and allow adjustments as time passes and

more is made certain

"It is the mark of an instructed mind to rest satisfied with the degree of precision

that the nature of the subject admits, and not to seek exactness when only an

approximation of the truth is possible." ARISTOTLE

TASK SET FOR PROJECT PLANNING
1) Establish project scope
2) Determine feasibility
3) Analyze risks
4) Define required resources

a) Determine human resources required
b) Define reusable software resources
c) Identify environmental resources

5) Estimate cost and effort
a) Decompose the problem
b) Develop two or more estimates using different approaches
c) Reconcile the estimates

6) Develop a project schedule
a) Establish a meaningful task set
b) Define a task network
c) Use scheduling tools to develop a timeline chart
d) Define schedule tracking mechanisms

EXAMPLE PROJECT: CAMPUS INFORMATION

ACCESS KIOSK

 Both podium-high and desk-high terminals located throughout
the campus in all classroom buildings, admin buildings, labs, and
dormitories

 Hand/Palm-login and logout (seamlessly)

 Voice input

 Optional audio/visual or just visual output

 Immediate access to all campus information plus

 E-mail

 Cell phone voice messaging

 Text messaging

SCOPE AND FEASIBILITY

SOFTWARE SCOPE

 Software scope describes

 The functions and features that are to be delivered to end users

 The data that are input to and output from the system

 The "content" that is presented to users as a consequence of using

the software

 The performance, constraints, interfaces, and reliability that bound

the system

 Scope can be define using two techniques

 A narrative description of software scope is developed after

communication with all stakeholders

 A set of use cases is developed by end users

(More on next slide)

SOFTWARE SCOPE (CONTINUED)

 After the scope has been identified, two questions are asked

 Can we build software to meet this scope?

 Is the project feasible?

 Software engineers too often rush (or are pushed) past these

questions

 Later they become mired in a project that is doomed from the onset

FEASIBILITY

 After the scope is resolved, feasibility is addressed

 Software feasibility has four dimensions

 Technology – Is the project technically feasible? Is it within the state of

the art? Can defects be reduced to a level matching the application's

needs?

 Finance – Is is financially feasible? Can development be completed at a

cost that the software organization, its client, or the market can afford?

 Time – Will the project's time-to-market beat the competition?

 Resources – Does the software organization have the resources needed

to succeed in doing the project?

Another view recommends the following feasibility dimensions: technological,

economical, legal, operational, and schedule issues (TELOS)

PROJECT RESOURCES

RESOURCE ESTIMATION

 Three major categories of software engineering resources

 People

 Development environment

 Reusable software components

 Often neglected during planning but become a paramount concern during

the construction phase of the software process

 Each resource is specified with

 A description of the resource

 A statement of availability

 The time when the resource will be required

 The duration of time that the resource will be applied

Time window

CATEGORIES OF RESOURCES

People

- Number required

- Skills required

- Geographical location

Development Environment

- Software tools

- Computer hardware

- Network resources

Reusable Software Components

- Off-the-shelf components

- Full-experience components

- Partial-experience components

- New components

The

Project

HUMAN RESOURCES

 Planners need to select the number and the kind of people
skills needed to complete the project

 They need to specify the organizational position and job
specialty for each person

 Small projects of a few person-months may only need one
individual

 Large projects spanning many person-months or years require
the location of the person to be specified also

 The number of people required can be determined only after
an estimate of the development effort

DEVELOPMENT ENVIRONMENT RESOURCES

 A software engineering environment (SEE) incorporates

hardware, software, and network resources that provide

platforms and tools to develop and test software work

products

 Most software organizations have many projects that require

access to the SEE provided by the organization

 Planners must identify the time window required for hardware

and software and verify that these resources will be available

REUSABLE SOFTWARE RESOURCES
 Off-the-shelf components

 Components are from a third party or were developed for a previous
project

 Ready to use; fully validated and documented; virtually no risk

 Full-experience components

 Components are similar to the software that needs to be built

 Software team has full experience in the application area of these
components

 Modification of components will incur relatively low risk

 Partial-experience components

 Components are related somehow to the software that needs to be built
but will require substantial modification

 Software team has only limited experience in the application area of these
components

 Modifications that are required have a fair degree of risk

 New components

 Components must be built from scratch by the software team specifically
for the needs of the current project

 Software team has no practical experience in the application area

 Software development of components has a high degree of risk

ESTIMATION OF PROJECT COST

AND EFFORT

FACTORS AFFECTING PROJECT

ESTIMATION

 The accuracy of a software project estimate is predicated on

 The degree to which the planner has properly estimated the size (e.g.,
KLOC) of the product to be built

 The ability to translate the size estimate into human effort, calendar
time, and money

 The degree to which the project plan reflects the abilities of the software
team

 The stability of both the product requirements and the environment that
supports the software engineering effort

PROJECT ESTIMATION OPTIONS

 Options for achieving reliable cost and effort estimates

1) Delay estimation until late in the project (we should be able to
achieve 100% accurate estimates after the project is complete)

2) Base estimates on similar projects that have already been
completed

3) Use relatively simple decomposition techniques to generate
project cost and effort estimates

4) Use one or more empirical estimation models for software cost
and effort estimation

 Option #1 is not practical, but results in good numbers

 Option #2 can work reasonably well, but it also relies on other
project influences being roughly equivalent

 Options #3 and #4 can be done in tandem to cross check
each other

PROJECT ESTIMATION APPROACHES

 Decomposition techniques

 These take a "divide and conquer" approach

 Cost and effort estimation are performed in a stepwise fashion by

breaking down a project into major functions and related

software engineering activities

 Empirical estimation models

 Offer a potentially valuable estimation approach if the historical

data used to seed the estimate is good

DECOMPOSITION TECHNIQUES

INTRODUCTION

 Before an estimate can be made and decomposition
techniques applied, the planner must

 Understand the scope of the software to be built

 Generate an estimate of the software’s size

 Then one of two approaches are used

 Problem-based estimation

 Based on either source lines of code or function point estimates

 Process-based estimation

 Based on the effort required to accomplish each task

APPROACHES TO SOFTWARE SIZING
 Function point sizing

 Develop estimates of the information domain characteristics (Ch. 15 –
Product Metrics for Software)

 Standard component sizing
 Estimate the number of occurrences of each standard component

 Use historical project data to determine the delivered LOC size per standard
component

 Change sizing
 Used when changes are being made to existing software

 Estimate the number and type of modifications that must be accomplished

 Types of modifications include reuse, adding code, changing code, and
deleting code

 An effort ratio is then used to estimate each type of change and the size of
the change

The results of these estimates are used to compute an optimistic (low), a most likely,

and a pessimistic (high) value for software size

PROBLEM-BASED ESTIMATION

1) Start with a bounded statement of scope

2) Decompose the software into problem functions that can each
be estimated individually

3) Compute an LOC or FP value for each function

4) Derive cost or effort estimates by applying the LOC or FP
values to your baseline productivity metrics (e.g.,
LOC/person-month or FP/person-month)

5) Combine function estimates to produce an overall estimate for
the entire project

(More on next slide)

PROBLEM-BASED ESTIMATION

(CONTINUED)

 In general, the LOC/pm and FP/pm metrics should be computed by
project domain
 Important factors are team size, application area, and complexity

 LOC and FP estimation differ in the level of detail required for
decomposition with each value

 For LOC, decomposition of functions is essential and should go into

considerable detail (the more detail, the more accurate the estimate)

 For FP, decomposition occurs for the five information domain

characteristics and the 14 adjustment factors

 External inputs, external outputs, external inquiries, internal logical files, external

interface files

pm = person month

PROBLEM-BASED ESTIMATION

(CONTINUED)

 For both approaches, the planner uses lessons learned to estimate an

optimistic, most likely, and pessimistic size value for each function or

count (for each information domain value)

 Then the expected size value S is computed as follows:

 S = (Sopt + 4Sm + Spess)/6

 Historical LOC or FP data is then compared to S in order to cross-

check it

PROCESS-BASED ESTIMATION

1) Identify the set of functions that the software needs to perform
as obtained from the project scope

2) Identify the series of framework activities that need to be
performed for each function

3) Estimate the effort (in person months) that will be required to
accomplish each software process activity for each function

(More on next slide)

PROCESS-BASED ESTIMATION (CONTINUED)

4) Apply average labor rates (i.e., cost/unit effort) to the effort
estimated for each process activity

5) Compute the total cost and effort for each function and each
framework activity (See table in Pressman, p. 655)

6) Compare the resulting values to those obtained by way of the
LOC and FP estimates

• If both sets of estimates agree, then your numbers are highly
reliable

• Otherwise, conduct further investigation and analysis concerning
the function and activity breakdown

This is the most commonly used of the two estimation techniques (problem and process)

RECONCILING ESTIMATES

 The results gathered from the various estimation techniques
must be reconciled to produce a single estimate of effort,
project duration, and cost

 If widely divergent estimates occur, investigate the following
causes

 The scope of the project is not adequately understood or has
been misinterpreted by the planner

 Productivity data used for problem-based estimation techniques
is inappropriate for the application, obsolete (i.e., outdated for the
current organization), or has been misapplied

 The planner must determine the cause of divergence and then
reconcile the estimates

EMPIRICAL ESTIMATION MODELS

INTRODUCTION

 Estimation models for computer software use empirically

derived formulas to predict effort as a function of LOC or FP

 Resultant values computed for LOC or FP are entered into an

estimation model

 The empirical data for these models are derived from a limited

sample of projects

 Consequently, the models should be calibrated to reflect local

software development conditions

COCOMO

 Stands for COnstructive COst MOdel

 Introduced by Barry Boehm in 1981 in his book “Software
Engineering Economics”

 Became one of the well-known and widely-used estimation
models in the industry

 It has evolved into a more comprehensive estimation model
called COCOMO II

 COCOMO II is actually a hierarchy of three estimation models

 As with all estimation models, it requires sizing information and
accepts it in three forms: object points, function points, and lines
of source code

(More on next slide)

COCOMO MODELS

 Application composition model - Used during the early stages
of software engineering when the following are important

 Prototyping of user interfaces

 Consideration of software and system interaction

 Assessment of performance

 Evaluation of technology maturity

 Early design stage model – Used once requirements have
been stabilized and basic software architecture has been
established

 Post-architecture stage model – Used during the construction
of the software

COCOMO COST DRIVERS

 Personnel Factors
 Applications experience

 Programming language experience

 Virtual machine experience

 Personnel capability

 Personnel experience

 Personnel continuity

 Platform experience

 Language and tool experience

 Product Factors
 Required software reliability

 Database size

 Software product complexity

 Required reusability

 Documentation match to life cycle needs

 Product reliability and complexity

(More on next slide)

COCOMO COST DRIVERS (CONTINUED)

 Platform Factors
 Execution time constraint

 Main storage constraint

 Computer turn-around time

 Virtual machine volatility

 Platform volatility

 Platform difficulty

 Project Factors
 Use of software tools

 Use of modern programming practices

 Required development schedule

 Classified security application

 Multi-site development

 Requirements volatility

MAKE/BUY DECISION

 It is often more cost effective to acquire rather than develop
software

 Managers have many acquisition options

 Software may be purchased (or licensed) off the shelf

 “Full-experience” or “partial-experience” software components may be
acquired and integrated to meet specific needs

 Software may be custom built by an outside contractor to meet the
purchaser’s specifications

 The make/buy decision can be made based on the following
conditions

 Will the software product be available sooner than internally developed
software?

 Will the cost of acquisition plus the cost of customization be less than
the cost of developing the software internally?

 Will the cost of outside support (e.g., a maintenance contract) be less
than the cost of internal support?



