
SOFTWARE ENGINEERING

LECTURE-6

SOFTWARE DEVELOPMENT LIFE CYCLE

(SDLC)
“

TOPICS COVERED

 CMM

 Waterfall Model

 RAD Model

 Spiral Model

CAPABILITY MATURITY MODEL (CMM)

 A bench-mark for measuring the maturity of an

organization’s software process

 CMM defines 5 levels of process maturity based on

certain Key Process Areas (KPA)

CMM LEVELS
Level 5 – Optimizing (< 1%)

-- process change management

-- technology change management

-- defect prevention

Level 4 – Managed (< 5%)
-- software quality management

-- quantitative process management

Level 3 – Defined (< 10%)
-- peer reviews

-- intergroup coordination

-- software product engineering

-- integrated software management

-- training program

-- organization process definition

-- organization process focus

Level 2 – Repeatable (~ 15%)
-- software configuration management

-- software quality assurance

-- software project tracking and oversight

-- software project planning

-- requirements management

Level 1 – Initial (~ 70%)

SDLC MODEL

 A framework that describes the activities performed

at each stage of a software development project.

WATERFALL MODEL
 Requirements – defines

needed information, function,

behavior, performance and

interfaces.

 Design – data structures,

software architecture, interface

representations, algorithmic

details.

 Implementation – source code,

database, user documentation,

testing.

WATERFALL STRENGTHS

Easy to understand, easy to use

Provides structure to inexperienced staff

Milestones are well understood

Sets requirements stability

Good for management control (plan, staff,

track)

Works well when quality is more important

than cost or schedule

WATERFALL DEFICIENCIES
All requirements must be known upfront

Deliverables created for each phase are
considered frozen – inhibits flexibility

Can give a false impression of progress

Does not reflect problem-solving nature of
software development – iterations of phases

 Integration is one big bang at the end

Little opportunity for customer to preview the
system (until it may be too late)

WHEN TO USE THE WATERFALL

MODEL

Requirements are very well known

Product definition is stable

Technology is understood

New version of an existing product

Porting an existing product to a new
platform.

V-SHAPED SDLC MODEL

 A variant of the Waterfall

that emphasizes the

verification and validation

of the product.

 Testing of the product is

planned in parallel with a

corresponding phase of

development

V-SHAPED STEPS
 Project and Requirements

Planning – allocate resources

 Product Requirements and
Specification Analysis – complete
specification of the software
system

 Architecture or High-Level Design
– defines how software functions
fulfill the design

 Detailed Design – develop
algorithms for each architectural
component

 Production, operation and
maintenance – provide for
enhancement and corrections

 System and acceptance testing –
check the entire software system in
its environment

 Integration and Testing – check
that modules interconnect
correctly

 Unit testing – check that each
module acts as expected

 Coding – transform algorithms into
software

V-SHAPED STRENGTHS

 Emphasize planning for verification and validation

of the product in early stages of product

development

 Each deliverable must be testable

 Project management can track progress by

milestones

 Easy to use

V-SHAPED WEAKNESSES

 Does not easily handle concurrent events

 Does not handle iterations or phases

 Does not easily handle dynamic changes in

requirements

 Does not contain risk analysis activities

WHEN TO USE THE V-SHAPED

MODEL

 Excellent choice for systems requiring high
reliability – hospital patient control applications

 All requirements are known up-front

 When it can be modified to handle changing
requirements beyond analysis phase

 Solution and technology are known

STRUCTURED EVOLUTIONARY

PROTOTYPING MODEL

 Developers build a prototype during the

requirements phase

 Prototype is evaluated by end users

 Users give corrective feedback

 Developers further refine the prototype

 When the user is satisfied, the prototype code is

brought up to the standards needed for a final

product.

STRUCTURED EVOLUTIONARY

PROTOTYPING STEPS

 A preliminary project plan is developed

 An partial high-level paper model is created

 The model is source for a partial requirements
specification

 A prototype is built with basic and critical attributes

 The designer builds
 the database

 user interface

 algorithmic functions

 The designer demonstrates the prototype, the user
evaluates for problems and suggests
improvements.

 This loop continues until the user is satisfied

STRUCTURED EVOLUTIONARY

PROTOTYPING STRENGTHS

Customers can “see” the system
requirements as they are being gathered

Developers learn from customers

A more accurate end product

Unexpected requirements accommodated

Allows for flexible design and development

Steady, visible signs of progress produced

 Interaction with the prototype stimulates
awareness of additional needed
functionality

STRUCTURED EVOLUTIONARY

PROTOTYPING WEAKNESSES

Tendency to abandon structured program

development for “code-and-fix” development

Bad reputation for “quick-and-dirty” methods

Overall maintainability may be overlooked

The customer may want the prototype

delivered.

Process may continue forever (scope creep)

WHEN TO USE

STRUCTURED EVOLUTIONARY

PROTOTYPING

Requirements are unstable or have to be

clarified

As the requirements clarification stage of a

waterfall model

Develop user interfaces

Short-lived demonstrations

New, original development

With the analysis and design portions of

object-oriented development.

RAPID APPLICATION MODEL (RAD)

Requirements planning phase (a workshop
utilizing structured discussion of business
problems)

User description phase – automated tools
capture information from users

Construction phase – productivity tools,
such as code generators, screen
generators, etc. inside a time-box. (“Do until
done”)

Cutover phase -- installation of the system,
user acceptance testing and user training

RAD STRENGTHS

Reduced cycle time and improved
productivity with fewer people means lower
costs

Time-box approach mitigates cost and
schedule risk

Customer involved throughout the complete
cycle minimizes risk of not achieving
customer satisfaction and business needs

Focus moves from documentation to code
(WYSIWYG).

Uses modeling concepts to capture
information about business, data, and
processes.

RAD WEAKNESSES

Accelerated development process must give
quick responses to the user

Risk of never achieving closure

Hard to use with legacy systems

Requires a system that can be modularized

Developers and customers must be
committed to rapid-fire activities in an
abbreviated time frame.

WHEN TO USE RAD

 Reasonably well-known requirements

 User involved throughout the life cycle

 Project can be time-boxed

 Functionality delivered in increments

 High performance not required

 Low technical risks

 System can be modularized

INCREMENTAL SDLC MODEL
 Construct a partial

implementation of a total
system

 Then slowly add increased
functionality

 The incremental model
prioritizes requirements of the
system and then implements
them in groups.

 Each subsequent release of the
system adds function to the
previous release, until all
designed functionality has been
implemented.

INCREMENTAL MODEL STRENGTHS

Develop high-risk or major functions first

Each release delivers an operational

product

Customer can respond to each build

Uses “divide and conquer” breakdown of

tasks

Lowers initial delivery cost

 Initial product delivery is faster

Customers get important functionality early

Risk of changing requirements is reduced

INCREMENTAL MODEL WEAKNESSES

 Requires good planning and design

 Requires early definition of a complete and fully
functional system to allow for the definition of
increments

 Well-defined module interfaces are required (some
will be developed long before others)

 Total cost of the complete system is not lower

WHEN TO USE THE INCREMENTAL

MODEL
Risk, funding, schedule, program complexity, or

need for early realization of benefits.

Most of the requirements are known up-front but

are expected to evolve over time

A need to get basic functionality to the market

early

On projects which have lengthy development

schedules

On a project with new technology

SPIRAL SDLC MODEL

Adds risk analysis,

and 4gl RAD

prototyping to the

waterfall model

Each cycle involves

the same sequence of

steps as the waterfall

process model

SPIRAL QUADRANT

DETERMINE OBJECTIVES, ALTERNATIVES AND

CONSTRAINTS

 Objectives: functionality, performance,

hardware/software interface, critical success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, interface, etc.

SPIRAL QUADRANT

EVALUATE ALTERNATIVES, IDENTIFY AND

RESOLVE RISKS

 Study alternatives relative to objectives and

constraints

 Identify risks (lack of experience, new technology,

tight schedules, poor process, etc.

 Resolve risks (evaluate if money could be lost by

continuing system development

SPIRAL QUADRANT

DEVELOP NEXT-LEVEL PRODUCT

 Typical activites:

 Create a design

 Review design

 Develop code

 Inspect code

 Test product

SPIRAL QUADRANT

PLAN NEXT PHASE

 Typical activities

 Develop project plan

 Develop configuration management plan

 Develop a test plan

 Develop an installation plan

SPIRAL MODEL STRENGTHS

Provides early indication of insurmountable

risks, without much cost

Users see the system early because of

rapid prototyping tools

Critical high-risk functions are developed

first

The design does not have to be perfect

Users can be closely tied to all lifecycle

steps

Early and frequent feedback from users

Cumulative costs assessed frequently

SPIRAL MODEL WEAKNESSES
 Time spent for evaluating risks too large for small or low-

risk projects

 Time spent planning, resetting objectives, doing risk
analysis and prototyping may be excessive

 The model is complex

 Risk assessment expertise is required

 Spiral may continue indefinitely

 Developers must be reassigned during non-development
phase activities

 May be hard to define objective, verifiable milestones that
indicate readiness to proceed through the next iteration

WHEN TO USE SPIRAL MODEL

When creation of a prototype is appropriate

When costs and risk evaluation is important

For medium to high-risk projects

Long-term project commitment unwise
because of potential changes to economic
priorities

Users are unsure of their needs

Requirements are complex

New product line

Significant changes are expected (research
and exploration)

AGILE SDLC’S

 Speed up or bypass one or more life cycle phases

 Usually less formal and reduced scope

 Used for time-critical applications

 Used in organizations that employ disciplined

methods

SOME AGILE METHODS

Adaptive Software Development (ASD)

Feature Driven Development (FDD)

Crystal Clear

Dynamic Software Development Method
(DSDM)

Rapid Application Development (RAD)

Scrum

Extreme Programming (XP)

Rational Unify Process (RUP)

EXTREME PROGRAMMING - XP

For small-to-medium-sized teams developing
software with vague or rapidly changing
requirements

Coding is the key activity throughout a software
project

 Communication among teammates is done with
code

 Life cycle and behavior of complex objects defined
in test cases – again in code

XP PRACTICES (1-6)
1. Planning game – determine scope of the next release

by combining business priorities and technical
estimates

2. Small releases – put a simple system into production,
then release new versions in very short cycle

3. Metaphor – all development is guided by a simple
shared story of how the whole system works

4. Simple design – system is designed as simply as
possible (extra complexity removed as soon as found)

5. Testing – programmers continuously write unit tests;
customers write tests for features

6. Refactoring – programmers continuously restructure
the system without changing its behavior to remove
duplication and simplify

XP PRACTICES (7 – 12)

7. Pair-programming -- all production code is written with
two programmers at one machine

8. Collective ownership – anyone can change any code
anywhere in the system at any time.

9. Continuous integration – integrate and build the
system many times a day – every time a task is
completed.

10. 40-hour week – work no more than 40 hours a week
as a rule

11. On-site customer – a user is on the team and available
full-time to answer questions

12. Coding standards – programmers write all code in
accordance with rules emphasizing communication
through the code

XP IS “EXTREME” BECAUSE
Commonsense practices taken to extreme levels

 If code reviews are good, review code all the time (pair

programming)

 If testing is good, everybody will test all the time

 If simplicity is good, keep the system in the simplest design that
supports its current functionality. (simplest thing that works)

 If design is good, everybody will design daily (refactoring)

 If architecture is important, everybody will work at defining and
refining the architecture (metaphor)

 If integration testing is important, build and integrate test several
times a day (continuous integration)

 If short iterations are good, make iterations really, really short (hours
rather than weeks)

XP REFERENCES

Online references to XP at

 http://www.extremeprogramming.org/

 http://c2.com/cgi/wiki?ExtremeProgrammingRoadm

ap

 http://www.xprogramming.com/

http://www.extremeprogramming.org/
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.xprogramming.com/

FEATURE DRIVEN DESIGN (FDD)

Five FDD process activities

1. Develop an overall model – Produce class and sequence
diagrams from chief architect meeting with domain experts and
developers.

2. Build a features list – Identify all the features that support
requirements. The features are functionally decomposed into
Business Activities steps within Subject Areas.

Features are functions that can be developed in two weeks and expressed in
client terms with the template: <action> <result> <object>

i.e. Calculate the total of a sale

3. Plan by feature -- the development staff plans the development
sequence of features

4. Design by feature -- the team produces sequence diagrams for
the selected features

5. Build by feature – the team writes and tests the code

 http://www.nebulon.com/articles/index.html

http://www.nebulon.com/articles/index.html

DYNAMIC SYSTEMS DEVELOPMENT

METHOD (DSDM)

Applies a framework for RAD and short time frames

Paradigm is the 80/20 rule

 – majority of the requirements can be delivered in a

relatively short amount of time.

DSDM PRINCIPLES

1. Active user involvement imperative (Ambassador
users)

2. DSDM teams empowered to make decisions

3. Focus on frequent product delivery

4. Product acceptance is fitness for business
purpose

5. Iterative and incremental development - to
converge on a solution

6. Requirements initially agreed at a high level

7. All changes made during development are
reversible

8. Testing is integrated throughout the life cycle

9. Collaborative and co-operative approach among
all stakeholders essential

DSDM LIFECYCLE

 Feasibility study

 Business study – prioritized requirements

 Functional model iteration

 risk analysis

 Time-box plan

 Design and build iteration

 Implementation

ADAPTIVE SDLC

Combines RAD with software engineering best

practices

 Project initiation

 Adaptive cycle planning

 Concurrent component engineering

 Quality review

 Final QA and release

ADAPTIVE STEPS

1. Project initialization – determine intent of
project

2. Determine the project time-box
(estimation duration of the project)

3. Determine the optimal number of cycles
and the time-box for each

4. Write an objective statement for each
cycle

5. Assign primary components to each cycle

6. Develop a project task list

7. Review the success of a cycle

8. Plan the next cycle

TAILORED SDLC MODELS

Any one model does not fit all projects

 If there is nothing that fits a particular
project, pick a model that comes close and
modify it for your needs.

Project should consider risk but complete
spiral too much – start with spiral & pare it
done

Project delivered in increments but there are
serious reliability issues – combine
incremental model with the V-shaped model

Each team must pick or customize a SDLC
model to fit its project

AGILE WEB REFERENCES

DePaul web site has links to many Agile references

 http://se.cs.depaul.edu/ise/agile.htm

http://se.cs.depaul.edu/ise/agile.htm

QUALITY – THE DEGREE TO WHICH THE

SOFTWARE SATISFIES STATED AND IMPLIED

REQUIREMENTS

 Absence of system crashes

 Correspondence between the software and the users’

expectations

 Performance to specified requirements

Quality must be controlled because it lowers production

speed, increases maintenance costs and can adversely

affect business

QUALITY ASSURANCE PLAN

 The plan for quality assurance activities should be
in writing

 Decide if a separate group should perform the
quality assurance activities

 Some elements that should be considered by the
plan are: defect tracking, unit testing, source-code
tracking, technical reviews, integration testing and
system testing.

QUALITY ASSURANCE PLAN

 Defect tracing – keeps track of each defect found,
its source, when it was detected, when it was
resolved, how it was resolved, etc

 Unit testing – each individual module is tested

 Source code tracing – step through source code
line by line

 Technical reviews – completed work is reviewed by
peers

 Integration testing -- exercise new code in
combination with code that already has been
integrated

 System testing – execution of the software for the
purpose of finding defects.

