
SOFTWARE ENGINEERING

LECTURE-6

SOFTWARE DEVELOPMENT LIFE CYCLE

(SDLC)
“

TOPICS COVERED

 CMM

 Waterfall Model

 RAD Model

 Spiral Model

CAPABILITY MATURITY MODEL (CMM)

 A bench-mark for measuring the maturity of an

organization’s software process

 CMM defines 5 levels of process maturity based on

certain Key Process Areas (KPA)

CMM LEVELS
Level 5 – Optimizing (< 1%)

-- process change management

-- technology change management

-- defect prevention

Level 4 – Managed (< 5%)
-- software quality management

-- quantitative process management

Level 3 – Defined (< 10%)
-- peer reviews

-- intergroup coordination

-- software product engineering

-- integrated software management

-- training program

-- organization process definition

-- organization process focus

Level 2 – Repeatable (~ 15%)
-- software configuration management

-- software quality assurance

-- software project tracking and oversight

-- software project planning

-- requirements management

Level 1 – Initial (~ 70%)

SDLC MODEL

 A framework that describes the activities performed

at each stage of a software development project.

WATERFALL MODEL
 Requirements – defines

needed information, function,

behavior, performance and

interfaces.

 Design – data structures,

software architecture, interface

representations, algorithmic

details.

 Implementation – source code,

database, user documentation,

testing.

WATERFALL STRENGTHS

Easy to understand, easy to use

Provides structure to inexperienced staff

Milestones are well understood

Sets requirements stability

Good for management control (plan, staff,

track)

Works well when quality is more important

than cost or schedule

WATERFALL DEFICIENCIES
All requirements must be known upfront

Deliverables created for each phase are
considered frozen – inhibits flexibility

Can give a false impression of progress

Does not reflect problem-solving nature of
software development – iterations of phases

 Integration is one big bang at the end

Little opportunity for customer to preview the
system (until it may be too late)

WHEN TO USE THE WATERFALL

MODEL

Requirements are very well known

Product definition is stable

Technology is understood

New version of an existing product

Porting an existing product to a new
platform.

V-SHAPED SDLC MODEL

 A variant of the Waterfall

that emphasizes the

verification and validation

of the product.

 Testing of the product is

planned in parallel with a

corresponding phase of

development

V-SHAPED STEPS
 Project and Requirements

Planning – allocate resources

 Product Requirements and
Specification Analysis – complete
specification of the software
system

 Architecture or High-Level Design
– defines how software functions
fulfill the design

 Detailed Design – develop
algorithms for each architectural
component

 Production, operation and
maintenance – provide for
enhancement and corrections

 System and acceptance testing –
check the entire software system in
its environment

 Integration and Testing – check
that modules interconnect
correctly

 Unit testing – check that each
module acts as expected

 Coding – transform algorithms into
software

V-SHAPED STRENGTHS

 Emphasize planning for verification and validation

of the product in early stages of product

development

 Each deliverable must be testable

 Project management can track progress by

milestones

 Easy to use

V-SHAPED WEAKNESSES

 Does not easily handle concurrent events

 Does not handle iterations or phases

 Does not easily handle dynamic changes in

requirements

 Does not contain risk analysis activities

WHEN TO USE THE V-SHAPED

MODEL

 Excellent choice for systems requiring high
reliability – hospital patient control applications

 All requirements are known up-front

 When it can be modified to handle changing
requirements beyond analysis phase

 Solution and technology are known

STRUCTURED EVOLUTIONARY

PROTOTYPING MODEL

 Developers build a prototype during the

requirements phase

 Prototype is evaluated by end users

 Users give corrective feedback

 Developers further refine the prototype

 When the user is satisfied, the prototype code is

brought up to the standards needed for a final

product.

STRUCTURED EVOLUTIONARY

PROTOTYPING STEPS

 A preliminary project plan is developed

 An partial high-level paper model is created

 The model is source for a partial requirements
specification

 A prototype is built with basic and critical attributes

 The designer builds
 the database

 user interface

 algorithmic functions

 The designer demonstrates the prototype, the user
evaluates for problems and suggests
improvements.

 This loop continues until the user is satisfied

STRUCTURED EVOLUTIONARY

PROTOTYPING STRENGTHS

Customers can “see” the system
requirements as they are being gathered

Developers learn from customers

A more accurate end product

Unexpected requirements accommodated

Allows for flexible design and development

Steady, visible signs of progress produced

 Interaction with the prototype stimulates
awareness of additional needed
functionality

STRUCTURED EVOLUTIONARY

PROTOTYPING WEAKNESSES

Tendency to abandon structured program

development for “code-and-fix” development

Bad reputation for “quick-and-dirty” methods

Overall maintainability may be overlooked

The customer may want the prototype

delivered.

Process may continue forever (scope creep)

WHEN TO USE

STRUCTURED EVOLUTIONARY

PROTOTYPING

Requirements are unstable or have to be

clarified

As the requirements clarification stage of a

waterfall model

Develop user interfaces

Short-lived demonstrations

New, original development

With the analysis and design portions of

object-oriented development.

RAPID APPLICATION MODEL (RAD)

Requirements planning phase (a workshop
utilizing structured discussion of business
problems)

User description phase – automated tools
capture information from users

Construction phase – productivity tools,
such as code generators, screen
generators, etc. inside a time-box. (“Do until
done”)

Cutover phase -- installation of the system,
user acceptance testing and user training

RAD STRENGTHS

Reduced cycle time and improved
productivity with fewer people means lower
costs

Time-box approach mitigates cost and
schedule risk

Customer involved throughout the complete
cycle minimizes risk of not achieving
customer satisfaction and business needs

Focus moves from documentation to code
(WYSIWYG).

Uses modeling concepts to capture
information about business, data, and
processes.

RAD WEAKNESSES

Accelerated development process must give
quick responses to the user

Risk of never achieving closure

Hard to use with legacy systems

Requires a system that can be modularized

Developers and customers must be
committed to rapid-fire activities in an
abbreviated time frame.

WHEN TO USE RAD

 Reasonably well-known requirements

 User involved throughout the life cycle

 Project can be time-boxed

 Functionality delivered in increments

 High performance not required

 Low technical risks

 System can be modularized

INCREMENTAL SDLC MODEL
 Construct a partial

implementation of a total
system

 Then slowly add increased
functionality

 The incremental model
prioritizes requirements of the
system and then implements
them in groups.

 Each subsequent release of the
system adds function to the
previous release, until all
designed functionality has been
implemented.

INCREMENTAL MODEL STRENGTHS

Develop high-risk or major functions first

Each release delivers an operational

product

Customer can respond to each build

Uses “divide and conquer” breakdown of

tasks

Lowers initial delivery cost

 Initial product delivery is faster

Customers get important functionality early

Risk of changing requirements is reduced

INCREMENTAL MODEL WEAKNESSES

 Requires good planning and design

 Requires early definition of a complete and fully
functional system to allow for the definition of
increments

 Well-defined module interfaces are required (some
will be developed long before others)

 Total cost of the complete system is not lower

WHEN TO USE THE INCREMENTAL

MODEL
Risk, funding, schedule, program complexity, or

need for early realization of benefits.

Most of the requirements are known up-front but

are expected to evolve over time

A need to get basic functionality to the market

early

On projects which have lengthy development

schedules

On a project with new technology

SPIRAL SDLC MODEL

Adds risk analysis,

and 4gl RAD

prototyping to the

waterfall model

Each cycle involves

the same sequence of

steps as the waterfall

process model

SPIRAL QUADRANT

DETERMINE OBJECTIVES, ALTERNATIVES AND

CONSTRAINTS

 Objectives: functionality, performance,

hardware/software interface, critical success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, interface, etc.

SPIRAL QUADRANT

EVALUATE ALTERNATIVES, IDENTIFY AND

RESOLVE RISKS

 Study alternatives relative to objectives and

constraints

 Identify risks (lack of experience, new technology,

tight schedules, poor process, etc.

 Resolve risks (evaluate if money could be lost by

continuing system development

SPIRAL QUADRANT

DEVELOP NEXT-LEVEL PRODUCT

 Typical activites:

 Create a design

 Review design

 Develop code

 Inspect code

 Test product

SPIRAL QUADRANT

PLAN NEXT PHASE

 Typical activities

 Develop project plan

 Develop configuration management plan

 Develop a test plan

 Develop an installation plan

SPIRAL MODEL STRENGTHS

Provides early indication of insurmountable

risks, without much cost

Users see the system early because of

rapid prototyping tools

Critical high-risk functions are developed

first

The design does not have to be perfect

Users can be closely tied to all lifecycle

steps

Early and frequent feedback from users

Cumulative costs assessed frequently

SPIRAL MODEL WEAKNESSES
 Time spent for evaluating risks too large for small or low-

risk projects

 Time spent planning, resetting objectives, doing risk
analysis and prototyping may be excessive

 The model is complex

 Risk assessment expertise is required

 Spiral may continue indefinitely

 Developers must be reassigned during non-development
phase activities

 May be hard to define objective, verifiable milestones that
indicate readiness to proceed through the next iteration

WHEN TO USE SPIRAL MODEL

When creation of a prototype is appropriate

When costs and risk evaluation is important

For medium to high-risk projects

Long-term project commitment unwise
because of potential changes to economic
priorities

Users are unsure of their needs

Requirements are complex

New product line

Significant changes are expected (research
and exploration)

AGILE SDLC’S

 Speed up or bypass one or more life cycle phases

 Usually less formal and reduced scope

 Used for time-critical applications

 Used in organizations that employ disciplined

methods

SOME AGILE METHODS

Adaptive Software Development (ASD)

Feature Driven Development (FDD)

Crystal Clear

Dynamic Software Development Method
(DSDM)

Rapid Application Development (RAD)

Scrum

Extreme Programming (XP)

Rational Unify Process (RUP)

EXTREME PROGRAMMING - XP

For small-to-medium-sized teams developing
software with vague or rapidly changing
requirements

Coding is the key activity throughout a software
project

 Communication among teammates is done with
code

 Life cycle and behavior of complex objects defined
in test cases – again in code

XP PRACTICES (1-6)
1. Planning game – determine scope of the next release

by combining business priorities and technical
estimates

2. Small releases – put a simple system into production,
then release new versions in very short cycle

3. Metaphor – all development is guided by a simple
shared story of how the whole system works

4. Simple design – system is designed as simply as
possible (extra complexity removed as soon as found)

5. Testing – programmers continuously write unit tests;
customers write tests for features

6. Refactoring – programmers continuously restructure
the system without changing its behavior to remove
duplication and simplify

XP PRACTICES (7 – 12)

7. Pair-programming -- all production code is written with
two programmers at one machine

8. Collective ownership – anyone can change any code
anywhere in the system at any time.

9. Continuous integration – integrate and build the
system many times a day – every time a task is
completed.

10. 40-hour week – work no more than 40 hours a week
as a rule

11. On-site customer – a user is on the team and available
full-time to answer questions

12. Coding standards – programmers write all code in
accordance with rules emphasizing communication
through the code

XP IS “EXTREME” BECAUSE
Commonsense practices taken to extreme levels

 If code reviews are good, review code all the time (pair

programming)

 If testing is good, everybody will test all the time

 If simplicity is good, keep the system in the simplest design that
supports its current functionality. (simplest thing that works)

 If design is good, everybody will design daily (refactoring)

 If architecture is important, everybody will work at defining and
refining the architecture (metaphor)

 If integration testing is important, build and integrate test several
times a day (continuous integration)

 If short iterations are good, make iterations really, really short (hours
rather than weeks)

XP REFERENCES

Online references to XP at

 http://www.extremeprogramming.org/

 http://c2.com/cgi/wiki?ExtremeProgrammingRoadm

ap

 http://www.xprogramming.com/

http://www.extremeprogramming.org/
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.xprogramming.com/

FEATURE DRIVEN DESIGN (FDD)

Five FDD process activities

1. Develop an overall model – Produce class and sequence
diagrams from chief architect meeting with domain experts and
developers.

2. Build a features list – Identify all the features that support
requirements. The features are functionally decomposed into
Business Activities steps within Subject Areas.

Features are functions that can be developed in two weeks and expressed in
client terms with the template: <action> <result> <object>

i.e. Calculate the total of a sale

3. Plan by feature -- the development staff plans the development
sequence of features

4. Design by feature -- the team produces sequence diagrams for
the selected features

5. Build by feature – the team writes and tests the code

 http://www.nebulon.com/articles/index.html

http://www.nebulon.com/articles/index.html

DYNAMIC SYSTEMS DEVELOPMENT

METHOD (DSDM)

Applies a framework for RAD and short time frames

Paradigm is the 80/20 rule

 – majority of the requirements can be delivered in a

relatively short amount of time.

DSDM PRINCIPLES

1. Active user involvement imperative (Ambassador
users)

2. DSDM teams empowered to make decisions

3. Focus on frequent product delivery

4. Product acceptance is fitness for business
purpose

5. Iterative and incremental development - to
converge on a solution

6. Requirements initially agreed at a high level

7. All changes made during development are
reversible

8. Testing is integrated throughout the life cycle

9. Collaborative and co-operative approach among
all stakeholders essential

DSDM LIFECYCLE

 Feasibility study

 Business study – prioritized requirements

 Functional model iteration

 risk analysis

 Time-box plan

 Design and build iteration

 Implementation

ADAPTIVE SDLC

Combines RAD with software engineering best

practices

 Project initiation

 Adaptive cycle planning

 Concurrent component engineering

 Quality review

 Final QA and release

ADAPTIVE STEPS

1. Project initialization – determine intent of
project

2. Determine the project time-box
(estimation duration of the project)

3. Determine the optimal number of cycles
and the time-box for each

4. Write an objective statement for each
cycle

5. Assign primary components to each cycle

6. Develop a project task list

7. Review the success of a cycle

8. Plan the next cycle

TAILORED SDLC MODELS

Any one model does not fit all projects

 If there is nothing that fits a particular
project, pick a model that comes close and
modify it for your needs.

Project should consider risk but complete
spiral too much – start with spiral & pare it
done

Project delivered in increments but there are
serious reliability issues – combine
incremental model with the V-shaped model

Each team must pick or customize a SDLC
model to fit its project

AGILE WEB REFERENCES

DePaul web site has links to many Agile references

 http://se.cs.depaul.edu/ise/agile.htm

http://se.cs.depaul.edu/ise/agile.htm

QUALITY – THE DEGREE TO WHICH THE

SOFTWARE SATISFIES STATED AND IMPLIED

REQUIREMENTS

 Absence of system crashes

 Correspondence between the software and the users’

expectations

 Performance to specified requirements

Quality must be controlled because it lowers production

speed, increases maintenance costs and can adversely

affect business

QUALITY ASSURANCE PLAN

 The plan for quality assurance activities should be
in writing

 Decide if a separate group should perform the
quality assurance activities

 Some elements that should be considered by the
plan are: defect tracking, unit testing, source-code
tracking, technical reviews, integration testing and
system testing.

QUALITY ASSURANCE PLAN

 Defect tracing – keeps track of each defect found,
its source, when it was detected, when it was
resolved, how it was resolved, etc

 Unit testing – each individual module is tested

 Source code tracing – step through source code
line by line

 Technical reviews – completed work is reviewed by
peers

 Integration testing -- exercise new code in
combination with code that already has been
integrated

 System testing – execution of the software for the
purpose of finding defects.

