
 SOFTWARE ENGINEERING

LECTURE-4

 Project Management Concepts

TOPICS COVERED

- The Management Spectrum

- The People

- The Product

- The Process

- The Project

THE MANAGEMENT SPECTRUM
 Effective software project management focuses on these items

(in this order)
 The people

 Deals with the cultivation of motivated, highly skilled people

 Consists of the stakeholders, the team leaders, and the software team

 The product
 Product objectives and scope should be established before a project can

be planned

 The process
 The software process provides the framework from which a

comprehensive plan for software development can be established

 The project
 Planning and controlling a software project is done for one primary

reason…it is the only known way to manage complexity

 In a 1998 survey, 26% of software projects failed outright, 46%
experienced cost and schedule overruns

People

Product

Process

Project

THE PEOPLE: THE STAKEHOLDERS

 Five categories of stakeholders

 Senior managers – define business issues that often have

significant influence on the project

 Project (technical) managers – plan, motivate, organize, and

control the practitioners who do the work

 Practitioners – deliver the technical skills that are necessary to

engineer a product or application

 Customers – specify the requirements for the software to be

engineered and other stakeholders who have a peripheral

interest in the outcome

 End users – interact with the software once it is released for

production use

THE PEOPLE: TEAM LEADERS

 Competent practitioners often fail to make good team leaders;
they just don’t have the right people skills

 Qualities to look for in a team leader
 Motivation – the ability to encourage technical people to produce to

their best ability
 Organization – the ability to mold existing processes (or invent new

ones) that will enable the initial concept to be translated into a final
product

 Ideas or innovation – the ability to encourage people to create and
feel creative even when they must work within bounds established
for a particular software product or application

 Team leaders should use a problem-solving management style
 Concentrate on understanding the problem to be solved
 Manage the flow of ideas
 Let everyone on the team know, by words and actions, that quality

counts and that it will not be compromised

(More on next slide)

THE PEOPLE: TEAM LEADERS

(CONTINUED)

 Another set of useful leadership traits
 Problem solving – diagnose, structure a solution, apply lessons

learned, remain flexible

 Managerial identity – take charge of the project, have
confidence to assume control, have assurance to allow good
people to do their jobs

 Achievement – reward initiative, demonstrate that controlled risk
taking will not be punished

 Influence and team building – be able to “read” people,
understand verbal and nonverbal signals, be able to react to
signals, remain under control in high-stress situations

THE PEOPLE: THE SOFTWARE TEAM

 Seven project factors to consider when structuring a software
development team

 The difficulty of the problem to be solved

 The size of the resultant program(s) in source lines of code

 The time that the team will stay together

 The degree to which the problem can be modularized

 The required quality and reliability of the system to be built

 The rigidity of the delivery date

 The degree of sociability (communication) required for the project

(More on next slide)

THE PEOPLE: THE SOFTWARE

TEAM (CONTINUED)

 Four organizational paradigms for software development
teams

 Closed paradigm – traditional hierarchy of authority; works well
when producing software similar to past efforts; members are
less likely to be innovative

 Random paradigm – depends on individual initiative of team
members; works well for projects requiring innovation or
technological breakthrough; members may struggle when orderly
performance is required

 Open paradigm – hybrid of the closed and random paradigm;
works well for solving complex problems; requires collaboration,
communication, and consensus among members

 Synchronous paradigm – organizes team members based on
the natural pieces of the problem; members have little
communication outside of their subgroups

(More on next slide)

THE PEOPLE: THE SOFTWARE

TEAM (CONTINUED)

 Five factors that cause team toxity (i.e., a toxic team
environment)
 A frenzied work atmosphere

 High frustration that causes friction among team members

 A fragmented or poorly coordinated software process

 An unclear definition of roles on the software team

 Continuous and repeated exposure to failure

 How to avoid these problems
 Give the team access to all information required to do the job

 Do not modify major goals and objectives, once they are defined,
unless absolutely necessary

 Give the team as much responsibility for decision making as
possible

 Let the team recommend its own process model

 Let the team establish its own mechanisms for accountability (i.e.,
reviews)

 Establish team-based techniques for feedback and problem
solving

THE PEOPLE: COORDINATION AND

COMMUNICATION ISSUES

 Key characteristics of modern software make projects fail

 scale, uncertainty, interoperability

 To better ensure success

 Establish effective methods for coordinating the people who do the

work

 Establish methods of formal and information communication among

team members

GROUP DYNAMICS
 Based on studies published by B. Tuckman in 1965

 Updated later in 1977

 Describes a four-stage model

 Forming

 Storming

 Norming

 Performing

GROUP DYNAMICS MODEL

 Forming

 Group members rely on safe, patterned behavior and look to the group

leader for guidance and direction

 Impressions are gathered and similarities and differences are noted

 Serious topics and feelings are avoided

 To grow, members must relinquish the comfort of non-threatening topics

and risk the possibility of conflict

GROUP DYNAMICS MODEL

 Storming

 As group members organize for the tasks, conflict inevitably results in
their personal relations and cliques start to form

 Individuals have to bend and mold their feelings to fit the group

 Fear of exposure or fear of failure causes an increased desire for
structural clarification and commitment

 Conflicts arise over leadership, structure, power, and authority

 Member behavior may have wide swings based on emerging issues of
competition and hostilities

 Some members remain silent while others attempt to dominate

GROUP DYNAMICS MODEL

(CONTINUED)

 Norming

 Members engage in active acknowledgement of all members’ contributions,
community building, and solving of group issues

 Members are willing to change their preconceived ideas or opinions based on
facts presented by the group

 Leadership is shared, active listening occurs, and cliques dissolve

 Members began to identify with one another, which leads to a level of trust in
their personal relations and contributes to cohesion

 Members begin to experience a sense of group belonging

GROUP DYNAMICS MODEL

(CONTINUED)

 Performing

 The capacity, range, and depth of personal relations in the group expand to

true interdependence

 Members can work independently, in subgroups, or altogether with equal

ability and success

 The group is most productive, members become self-assuring, and the need

for group approval is past

 Genuine problem solving can occur leading towards optimal solutions

People

Product

Process

Project

THE PRODUCT

 The scope of the software development must be established
and bounded
 Context – How does the software to be built fit into a larger

system, product, or business context, and what constraints are
imposed as a result of the context?

 Information objectives – What customer-visible data objects are
produced as output from the software? What data objects are
required for input?

 Function and performance – What functions does the software
perform to transform input data into output? Are there any
special performance characteristics to be addressed?

 Software project scope must be unambiguous and
understandable at both the managerial and technical levels

(More on next slide)

THE PRODUCT (CONTINUED)

 Problem decomposition

 Also referred to as partitioning or problem elaboration

 Sits at the core of software requirements analysis

 Two major areas of problem decomposition

 The functionality that must be delivered

 The process that will be used to deliver it

People

Product

Process

Project

THE PROCESS

 Getting Started
 The project manager must decide which process model is most

appropriate based on
 The customers who have requested the product and the people who

will do the work

 The characteristics of the product itself

 The project environment in which the software team works

 Once a process model is selected, a preliminary project plan is
established based on the process framework activities

 Process decomposition then begins

 The result is a complete plan reflecting the work tasks required to
populate the framework activities

 Project planning begins as a melding of the product and the
process based on the various framework activities

People

Product

Process

Project

THE PROJECT: A COMMON SENSE APPROACH

 Start on the right foot
 Understand the problem; set realistic objectives and expectations; form a

good team

 Maintain momentum
 Provide incentives to reduce turnover of people; emphasize quality in every

task; have senior management stay out of the team’s way

 Track progress
 Track the completion of work products; collect software process and project

measures; assess progress against expected averages

 Make smart decisions
 Keep it simple; use COTS or existing software before writing new code;

follow standard approaches; identify and avoid risks; always allocate more
time than you think you need to do complex or risky tasks

 Conduct a post mortem analysis
 Track lessons learned for each project; compare planned and actual

schedules; collect and analyze software project metrics; get feedback from
teams members and customers; record findings in written form

THE PROJECT: SIGNS THAT IT IS IN

JEOPARDY
 Software people don't understand their customer's needs

 The product scope is poorly defined

 Changes are managed poorly

 The chosen technology changes

 Business needs change (or are poorly defined)

 Deadlines are unrealistic

 Users are resistant

 Sponsorship is lost (or was never properly obtained)

 The project team lacks people with appropriate skills

 Managers (and practitioners) avoid best practices and lessons
learned

THE PROJECT: THE W5HH PRINCIPLE

 Why is the system being developed?
 Assesses the validity of business reasons and justifications

 What will be done?
 Establishes the task set required for the project

 When will it be done?
 Establishes a project schedule

 Who is responsible for a function?
 Defines the role and responsibility of each team member

 Where are they organizationally located?
 Notes the organizational location of team members, customers, and other

stakeholders

 How will the job be done technically and managerially?
 Establishes the management and technical strategy for the project

 How much of each resource is needed?
 Establishes estimates based on the answers to the previous questions

A series of questions that lead to a definition of key project characteristics

and the resultant project plan

SUMMARY

People

Product

Process

Project

