
SOFTWARE ENGINEERING

LECTURE-2

 Software and Software Engineering

TOPICS COVERED

- Dual role of software

- Software questions haven't changed

- A definition of software

- Differences between hardware and software

- Changing nature of software

- Dealing with legacy software

- Software myths

DUAL ROLE OF SOFTWARE

 Both a product and a vehicle for delivering a product

 Product

 Delivers computing potential

 Produces, manages, acquires, modifies, display, or transmits
information

 Vehicle

 Supports or directly provides system functionality

 Controls other programs (e.g., operating systems)

 Effects communications (e.g., networking software)

 Helps build other software (e.g., software tools)

QUESTIONS ABOUT SOFTWARE HAVEN'T

CHANGED OVER THE DECADES

 Why does it take so long to get software finished?

 Why are development costs so high?

 Why can't we find all errors before we give the software to our
customers?

 Why do we spend so much time and effort maintaining existing
programs?

 Why do we continue to have difficulty in measuring progress as
software is being developed and maintained?

A DEFINITION OF SOFTWARE

(ALL INCLUSIVE)

 Instructions (computer programs) that when executed provide

desired features, function, and performance

 Data structures that enable the programs to adequately

manipulate information

 Documents that describe the operation and use of the programs

DIFFERENCES BETWEEN SOFTWARE AND

HARDWARE

 Software is developed or engineered; it is not manufactured in
the classical sense

 Impacts the management of software projects

 Software doesn't wear out

 Hardware bathtub curve compared to the software ascending spiked
curve

 Although the industry is moving toward component-based
construction, most software continues to be custom built (it is
still complex to build)

SOFTWARE FAILURE CURVE

CHANGING NATURE OF SOFTWARE

 System software

 Application software

 Engineering/scientific software

 Embedded software

 Product-line software (e.g., inventory control, word processing,
multimedia)

 Web applications

 Artificial intelligence software

 Ubiquitous computing (small, wireless devices)

 Netsourcing (net-wide computing)

 Open source (operating systems, databases, development
environments)

 The ".com" marketing applications

LEGACY SOFTWARE - CHARACTERISTICS

 Support core business functions

 Have longevity and business criticality

 Exhibit poor quality

 Convoluted code, poor documentation, poor testing, poor change

management

REASONS FOR EVOLVING THE LEGACY

SOFTWARE

 (Adaptive) Must be adapted to meet the needs of new computing

environments or more modern systems, databases, or networks

 (Perfective) Must be enhanced to implement new business

requirements

 (Corrective) Must be changed because of errors found in the

specification, design, or implementation

(Note: These are also the three major reasons for any software maintenance)

SOFTWARE MYTHS - MANAGEMENT

 "We already have a book that is full of standards and procedures for
building software. Won't that provide my people with everything they
need to know?"

 Not used, not up to date, not complete, not focused on quality, time, and
money

 "If we get behind, we can add more programmers and catch up"

 Adding people to a late software project makes it later

 Training time, increased communication lines

 "If I decide to outsource the software project to a third party, I can just
relax and let that firm build it"

 Software projects need to be controlled and managed

SOFTWARE MYTHS - CUSTOMER

 "A general statement of objectives is sufficient to begin writing
programs – we can fill in the details later"

 Ambiguous statement of objectives spells disaster

 "Project requirements continually change, but change can be
easily accommodated because software is flexible"

 Impact of change depends on where and when it occurs in the
software life cycle (requirements analysis, design, code, test)

SOFTWARE MYTHS - PRACTITIONER

 "Once we write the program and get it to work, our job is done"

 60% to 80% of all effort expended on software occurs after it is
delivered

 "Until I get the program running, I have no way of assessing its
quality

 Formal technical reviews of requirements analysis documents,
design documents, and source code (more effective than actual
testing)

 "The only deliverable work product for a successful project is the
working program"

 Software, documentation, test drivers, test results

 "Software engineering will make us create voluminous and
unnecessary documentation and will invariably slow us down"

 Creates quality, not documents; quality reduces rework and provides
software on time and within the budget

