
SOFTWARE ENGINEERING

LECTURE-16

Process and Project Metrics

TOPICS COVERED

- Introduction

- Metrics in the Process Domain

- Metrics in the Project Domain

- Software Measurement

- Integrating Metrics within the Software Process

INTRODUCTION

WHAT ARE METRICS?
 Software process and project metrics are quantitative measures

 They are a management tool

 They offer insight into the effectiveness of the software process
and the projects that are conducted using the process as a
framework

 Basic quality and productivity data are collected

 These data are analyzed, compared against past averages, and
assessed

 The goal is to determine whether quality and productivity
improvements have occurred

 The data can also be used to pinpoint problem areas

 Remedies can then be developed and the software process can
be improved

A QUOTE ON MEASUREMENT

“When you can measure what you are speaking about and express it in

numbers, you know something about it; but when you cannot measure,

when you cannot express it in numbers, your knowledge is of a meager

and unsatisfactory kind; it may be the beginning of knowledge, but you

have scarcely, in your thoughts, advanced to the stage of science.”

 LORD WILLIAM KELVIN (1824 – 1907)

USES OF MEASUREMENT

 Can be applied to the software process with the intent of

improving it on a continuous basis

 Can be used throughout a software project to assist in

estimation, quality control, productivity assessment, and

project control

 Can be used to help assess the quality of software work

products and to assist in tactical decision making as a project

proceeds

REASONS TO MEASURE

 To characterize in order to
 Gain an understanding of processes, products, resources, and

environments

 Establish baselines for comparisons with future assessments

 To evaluate in order to
 Determine status with respect to plans

 To predict in order to
 Gain understanding of relationships among processes and

products

 Build models of these relationships

 To improve in order to
 Identify roadblocks, root causes, inefficiencies, and other

opportunities for improving product quality and process
performance

METRICS IN THE PROCESS DOMAIN

METRICS IN THE PROCESS DOMAIN

 Process metrics are collected across all projects and over long
periods of time

 They are used for making strategic decisions

 The intent is to provide a set of process indicators that lead to
long-term software process improvement

 The only way to know how/where to improve any process is to
 Measure specific attributes of the process

 Develop a set of meaningful metrics based on these attributes

 Use the metrics to provide indicators that will lead to a strategy for
improvement

(More on next slide)

METRICS IN THE PROCESS DOMAIN

(CONTINUED)

 We measure the effectiveness of a process by deriving a set
of metrics based on outcomes of the process such as
 Errors uncovered before release of the software

 Defects delivered to and reported by the end users

 Work products delivered

 Human effort expended

 Calendar time expended

 Conformance to the schedule

 Time and effort to complete each generic activity

ETIQUETTE OF PROCESS METRICS

 Use common sense and organizational sensitivity when interpreting
metrics data

 Provide regular feedback to the individuals and teams who collect
measures and metrics

 Don’t use metrics to evaluate individuals

 Work with practitioners and teams to set clear goals and metrics
that will be used to achieve them

 Never use metrics to threaten individuals or teams

 Metrics data that indicate a problem should not be considered
“negative”
 Such data are merely an indicator for process improvement

 Don’t obsess on a single metric to the exclusion of other important
metrics

METRICS IN THE PROJECT DOMAIN

METRICS IN THE PROJECT DOMAIN

 Project metrics enable a software project manager to

 Assess the status of an ongoing project

 Track potential risks

 Uncover problem areas before their status becomes critical

 Adjust work flow or tasks

 Evaluate the project team’s ability to control quality of software
work products

 Many of the same metrics are used in both the process and
project domain

 Project metrics are used for making tactical decisions

 They are used to adapt project workflow and technical activities

USE OF PROJECT METRICS

 The first application of project metrics occurs during estimation

 Metrics from past projects are used as a basis for estimating time and effort

 As a project proceeds, the amount of time and effort expended are

compared to original estimates

 As technical work commences, other project metrics become important

 Production rates are measured (represented in terms of models created,

review hours, function points, and delivered source lines of code)

 Error uncovered during each generic framework activity (i.e,

communication, planning, modeling, construction, deployment) are

measured

(More on next slide)

USE OF PROJECT METRICS (CONTINUED)

 Project metrics are used to

 Minimize the development schedule by making the adjustments necessary

to avoid delays and mitigate potential problems and risks

 Assess product quality on an ongoing basis and, when necessary, to

modify the technical approach to improve quality

 In summary

 As quality improves, defects are minimized

 As defects go down, the amount of rework required during the project is

also reduced

 As rework goes down, the overall project cost is reduced

SOFTWARE MEASUREMENT

CATEGORIES OF SOFTWARE

MEASUREMENT

 Two categories of software measurement

 Direct measures of the

 Software process (cost, effort, etc.)

 Software product (lines of code produced, execution speed, defects

reported over time, etc.)

 Indirect measures of the

 Software product (functionality, quality, complexity, efficiency, reliability,

maintainability, etc.)

 Project metrics can be consolidated to create process metrics

for an organization

SIZE-ORIENTED METRICS

 Derived by normalizing quality and/or productivity measures by
considering the size of the software produced

 Thousand lines of code (KLOC) are often chosen as the
normalization value

 Metrics include
 Errors per KLOC - Errors per person-month

 Defects per KLOC - KLOC per person-month

 Dollars per KLOC - Dollars per page of documentation

 Pages of documentation per KLOC

(More on next slide)

SIZE-ORIENTED METRICS (CONTINUED)

 Size-oriented metrics are not universally accepted as the best
way to measure the software process

 Opponents argue that KLOC measurements
 Are dependent on the programming language

 Penalize well-designed but short programs

 Cannot easily accommodate nonprocedural languages

 Require a level of detail that may be difficult to achieve

FUNCTION-ORIENTED METRICS

 Function-oriented metrics use a measure of the functionality
delivered by the application as a normalization value

 Most widely used metric of this type is the function point:

 FP = count total * [0.65 + 0.01 * sum (value adj. factors)]

 Material in Chapter 15 covered this in more detail

 Function point values on past projects can be used to compute, for
example, the average number of lines of code per function point
(e.g., 60)

FUNCTION POINT CONTROVERSY

 Like the KLOC measure, function point use also has
proponents and opponents

 Proponents claim that
 FP is programming language independent

 FP is based on data that are more likely to be known in the early
stages of a project, making it more attractive as an estimation
approach

 Opponents claim that
 FP requires some “sleight of hand” because the computation is

based on subjective data

 Counts of the information domain can be difficult to collect after
the fact

 FP has no direct physical meaning…it’s just a number

RECONCILING LOC AND FP METRICS

 Relationship between LOC and FP depends upon

 The programming language that is used to implement the software

 The quality of the design

 FP and LOC have been found to be relatively accurate predictors

of software development effort and cost

 However, a historical baseline of information must first be

established

 LOC and FP can be used to estimate object-oriented software

projects

 However, they do not provide enough granularity for the schedule

and effort adjustments required in the iterations of an evolutionary or

incremental process

 The table on the next slide provides a rough estimate of the

average LOC to one FP in various programming languages

LOC PER FUNCTION POINT

Language Average Median Low High

Ada 154 -- 104 205

Assembler 337 315 91 694

C 162 109 33 704

C++ 66 53 29 178

COBOL 77 77 14 400

Java 55 53 9 214

PL/1 78 67 22 263

Visual Basic 47 42 16 158

OBJECT-ORIENTED METRICS

 Number of scenario scripts (i.e., use cases)
 This number is directly related to the size of an application and to

the number of test cases required to test the system

 Number of key classes (the highly independent components)
 Key classes are defined early in object-oriented analysis and are

central to the problem domain

 This number indicates the amount of effort required to develop the
software

 It also indicates the potential amount of reuse to be applied during
development

 Number of support classes
 Support classes are required to implement the system but are not

immediately related to the problem domain (e.g., user interface,
database, computation)

 This number indicates the amount of effort and potential reuse

(More on next slide)

OBJECT-ORIENTED METRICS

(CONTINUED)

 Average number of support classes per key class
 Key classes are identified early in a project (e.g., at requirements

analysis)

 Estimation of the number of support classes can be made from the
number of key classes

 GUI applications have between two and three times more support
classes as key classes

 Non-GUI applications have between one and two times more
support classes as key classes

 Number of subsystems
 A subsystem is an aggregation of classes that support a function

that is visible to the end user of a system

METRICS FOR SOFTWARE QUALITY

 Correctness

 This is the number of defects per KLOC, where a defect is a verified lack of
conformance to requirements

 Defects are those problems reported by a program user after the program
is released for general use

 Maintainability

 This describes the ease with which a program can be corrected if an error
is found, adapted if the environment changes, or enhanced if the customer
has changed requirements

 Mean time to change (MTTC) : the time to analyze, design, implement, test,
and distribute a change to all users

 Maintainable programs on average have a lower MTTC

DEFECT REMOVAL EFFICIENCY

 Defect removal efficiency provides benefits at both the project
and process level

 It is a measure of the filtering ability of QA activities as they are
applied throughout all process framework activities

 It indicates the percentage of software errors found before software
release

 It is defined as DRE = E / (E + D)

 E is the number of errors found before delivery of the software to the
end user

 D is the number of defects found after delivery

 As D increases, DRE decreases (i.e., becomes a smaller and
smaller fraction)

 The ideal value of DRE is 1, which means no defects are found
after delivery

 DRE encourages a software team to institute techniques for
finding as many errors as possible before delivery

INTEGRATING METRICS WITHIN THE

SOFTWARE PROCESS

ARGUMENTS FOR SOFTWARE METRICS

 Most software developers do not measure, and most have little
desire to begin

 Establishing a successful company-wide software metrics
program can be a multi-year effort

 But if we do not measure, there is no real way of determining
whether we are improving

 Measurement is used to establish a process baseline from which
improvements can be assessed

 Software metrics help people to develop better project estimates,
produce higher-quality systems, and get products out the door
on time

ESTABLISHING A METRICS BASELINE

 By establishing a metrics baseline, benefits can be obtained at
the software process, product, and project levels

 The same metrics can serve many masters

 The baseline consists of data collected from past projects

 Baseline data must have the following attributes

 Data must be reasonably accurate (guesses should be avoided)

 Data should be collected for as many projects as possible

 Measures must be consistent (e.g., a line of code must be
interpreted consistently across all projects)

 Past applications should be similar to the work that is to be
estimated

 After data is collected and metrics are computed, the metrics
should be evaluated and applied during estimation, technical
work, project control, and process improvement

SOFTWARE METRICS BASELINE PROCESS

Software

Engineering

Process

Software

Project

Software

Product

Data

Collection

Metrics

Computation

Metrics

Evaluation

Measures

Metrics

Indicators

GETTING STARTED WITH METRICS

1) Understand your existing process

2) Define the goals to be achieved by establishing a metrics
program

3) Identify metrics to achieve those goals
 Keep the metrics simple

 Be sure the metrics add value to your process and product

4) Identify the measures to be collected to support those metrics

(More on next slide)

GETTING STARTED WITH METRICS

(CONTINUED)

5) Establish a measurement collection process
a) What is the source of the data?

b) Can tools be used to collect the data?

c) Who is responsible for collecting the data?

d) When are the data collected and recorded?

e) How are the data stored?

f) What validation mechanisms are used to ensure the data are correct?

6) Acquire appropriate tools to assist in collection and assessment

7) Establish a metrics database

8) Define appropriate feedback mechanisms on what the metrics
indicate about your process so that the process and the metrics
program can be improved

