
SOFTWARE ENGINEERING

LECTURE-14

Metrics

TOPICS COVERED

 Introduction

 Attributes Of Effective Software Metrics

 Metrics for SRS Attributes

 Component-level Design Metrics

1-3

DEFINITION

 Measure: A quantitative indication of the
 extent, amount, dimensions, capacity, or
size of some attribute of a product or
process.

 Metric: A quantitative measure of the degree
 to which a system, component, or
 process possesses a given attribute.

 A comparison of 2 or more measures.
 Indicator:A metric or combination of metrics

 that provide insight into the software
 process, a software project or the
 product.

1-4

WHY DO WE MEASURE?

 To understand what is happening during

development and maintenance.

 To control what is happening on our projects.

 To improve our process and products.

1-5

A GOOD MANAGER MEASURES

1-6

measurement

What do we

 use as a

 basis?

 • size?

 • function?

project metrics

process metrics
process

product

product metrics

PROCESS METRICS
 majority focus on quality achieved as a consequence

of a repeatable or managed process

 statistical SQA data

 error categorization & analysis

 defect removal efficiency

 propagation from phase to phase

1-7

1-8

Defect Removal Efficiency

DRE = (errors) / (errors + defects)

where

errors = problems found before release

defects = problems found after release

PROJECT METRICS
 Objectives:

 To minimize the development schedule

 To assess product quality on an ongoing basis.

 Examples:

 Effort/time per SE task

 Errors uncovered per review hour

 Scheduled vs. actual milestone dates

 Changes (number) and their characteristics

 Distribution of effort on SE tasks

1-9

PRODUCT METRICS
 Objectives:

 focus on the quality of deliverables

 Examples:

 measures of analysis model

 complexity of the design

internal algorithmic complexity
architectural complexity
data flow complexity

 code measures (e.g., Halstead)

 measures of process effectiveness

e.g., defect removal efficiency

1-
10

MEASUREMENT PROCESS

 Formulation
 Collection
 Analysis
 Interpretation
 Feedback

1-
11

FORMULATION PRINCIPLES

 The objectives of measurement should be established
before data collection begins

 Each technical metric should be defined in an
unambiguous manner.

 Metrics should be derived based on a theory that is
valid for the domain of application.

 Metrics should be tailored to best accommodate
specific products and processes.

1-
12

COLLECTION & ANALYSIS PRINCIPLES

 Whenever possible, data collection and analysis
should be automated.

 Valid statistical techniques should be applied to

establish relationships between internal product
attributes and external quality characteristics.

 Interpretative guidelines and recommendations
should be established for each metric.

1-
13

ATTRIBUTES OF EFFECTIVE SOFTWARE
METRICS

 Simple and Computable
 Empirically and Intuitively
 Consistent and Objective
 Programming language independent
 An effective mechanism for quality feedback

1-
14

MEASURING SOFTWARE QUALITY: MCCALL’S
QUALITY FACTORS

1-
15

 Product Operation

 Correctness

 Reliability

 Usability

 Integrity

 Efficiency

 Product Revision

 Maintainability

 Testability

 Flexibility

 Product Transition

 Reusability

 Portability

 Interoperability

MEASURING SOFTWARE QUALITY: MCCALL’S
QUALITY FACTORS

1-
16

Reliability

 Consistency

 Accuracy

 Error-tolerance

 Simplicity

Maintainability

 Concision

 Consistency

 Modularity

 Self-documentation

 simplicity

MEASURING QUALITY IN SOFTWARE
REQUIREMENTS SPECIFICATION (SRS)

1-
17

 Unambiguous
 Complete
 Correct
 Understandable
 Verifiable
 Internally consistent
 Externally consistent
 Achievable
 Concise
 Design independent
 Traceable
 Modifiable

 Electronically stored
 Executable/Interpretable
 Annotated by relative importance
 Annotated by relative stability
 Annotated by version
 Not redundant
 At right level of detail
 Precise
 Reusable
 Traced
 Organized
 Cross-referenced

METRICS FOR SRS ATTRIBUTES

 nf = functional requirements
 nnf = non-functional requirements

 nr = total requirements = nf + nnf

1-
18

UNAMBIGUOUS

 A SRS is unambiguous if and only if every

requirement stated therein has only one possible
interpretation.

 Metric:

 nui is the number of requirements for which all
reviewers presented identical interpretations.

 0 - every requirement has multiple interpretation
 1 - every requirement has a unique interpretation

1-
19

Q1 
n
n
ui

r

COMPLETENESS

 A SRS is complete if everything that the software is
supposed to do is included in the SRS.

 Metric:

 nA is the number of requirements in block A

1-
20

Q 2 
n
n
A

r

CORRECTNESS

 A SRS is correct if and only if every requirement

represents something required of the system to be
built

 Metric:

 nC is the number of correct requirements
 nI is the number of incorrect requirements

1-
21

Q 3  
n
n n

C

C I

UNDERSTANDABLE

 A SRS is understandable if all classes of SRS

readers can easily comprehend the meaning of all
requirements with a minimum of explanation.

 Metric:

nur is the number of requirements for which all reviewers
thought they understood.

1-
22

Q 4 
n
n
ur

r

CONCISE

 A SRS is concise if it is as short as possible without
adversely affecting any other quality of the SRS.

 Metric:

 size is the number of pages

1-
23

Q 5
1

1


size

NOT REDUNDANT

 A SRS is redundant if the same requirement is stated
more than one.

 Metric:

 nf is the actual functions specified
 nu is the actual unique functions specified

1-
24

Q 6 
n
n
f

u

HIGH-LEVEL DESIGN METRICS

 High-level design metrics focus on characteristics of

the program architecture with an emphasis on the

architectural structural and the effectiveness of
modules

 Metrics:
 Card and Glass (1990)
 Henry and Kafura (1981)
 Fenton (1991)

1-
25

CARD AND GLASS (1990)

 3 software design complexity measures:
 structural complexity
 data complexity
 system complexity

1-
26

CARD AND GLASS (1990)

 Structural complexity (S(i))

where fout is the fan-out of module i

 Data complexity (D(i))

where v(i) is the number of input and output variables that are
passed to and from module i

 System complexity (C(i))

1-
27

S i f iout() () 2

D i v i f iout() () / [()] 2 1

C i S i D i() () () 

HENRY & KAFURA (1981)

where length (i) = the number of programming language
statements in module i
 fin(i) = the number of fan-in of module i
 fout(i) = the number of fan-out of module i

 fan-in = the number of local flows of information that

terminate at a module + the number of data structures
from which information is retrieved.

 Fan-out = the number of local flows of information that

emanate from a module plus_the number of data
structures that are updated by that module

1-
28

Complexity length i f i f iin out  () [() ()]2

1-
29

WC

FD CW DR

GDN RD FWS PW

DOC

name doc
err

name

doc doc

doc

doc doc
doc

doc, cw

wc wc

FENTON (1991)

 Measure of the connectivity density of the architecture

and a simple indication of the coupling of the
architecture.
 r = a/n
 r = arc-to-node ratio
 a = the number of arcs (lines of control)
 n = the number of nodes (modules)

 Depth = the longest path from the root (top) to a leaf
node

 Width = maximum number of nodes at any one level of
the architecture

1-
30

COMPONENT-LEVEL DESIGN METRICS

 Cohesion Metrics
 Bieman and Ott (1994)

 Coupling Metrics
 Dhama (1995)

 Complexity Metrics
 McCabe (1976)

1-
31

BIEMAN AND OTT (1994)

 Data slice is a backward walk through a module that

looks for data values that affect the module location at
which the walk began.

 Data token are variables and constants defined for a
module.

 Glue tokens are data tokens that lie on one or more
data slice.

 Superglue tokens are the data tokens that are common
to every data slice in a module.

1-
32

BIEMAN AND OTT (1994)

 Strong functional cohesion (SFC)
SFC(i) = SG(SA(i))/tokens (i)

SG(SA(i)) = superglue tokens

1-
33

PROCEDURE SUM AND PRODUCT

(N : Integer;

 Var SumN, ProdN : Integer);

Var I : Integer

Begin

 SumN : = 0;

 ProdN : = 1;

 For I : = 1 to N do begin

 SumN : = SumN + I

 ProdN: = ProdN + I

 End;
End; 1-

34

1-
35

Data Slide for SumN
(N : Integer;

 Var SumN, ProdN : Integer);

Var I : Integer

Begin

 SumN : = 0;

 ProdN : = 1;

 For I : = 1 to N do begin

 SumN : = SumN + I

 ProdN: = ProdN + I

 End;

End;

Data Slice for SumN = N1·SumN1·I1·SumN2·01·I2·12·N2·SumN3·SumN4·I3

(N : Integer;

 Var SumN, ProdN : Integer);

Var I : Integer

Begin

 SumN : = 0;

 ProdN : = 1;

 For I : = 1 to N do begin

 SumN : = SumN + I

 ProdN: = ProdN + I

 End;

End;

1-
36

Data Slide for ProdN

Data Slice for ProdN = N1·ProdN1·I1·ProdN2·11·I2·12·N2·ProdN3·ProdN4·I4

Data token SumN ProdN

N1

SumN1

ProdN1

I1

SumN2

01

ProdN2

11

I2

12

N2

SumN3

SumN4

I3

ProdN3

ProdN4

I4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1-
37

SUPER GLUE

 S1 S2 S3

 I I I Super Glue

 I

 I

 I

 I I I Super Glue

 I

 I I Glue

 I I Glue

1-
38

FUNCTIONAL COHESION

 Strong functional cohesion (SFC)
SFC(i) = SG(SA(i))/tokens (i)
SG(SA(i)) = superglue tokens
SG(SumAndProduct) = 5/17 = 0.204

1-
39

DHAMA (1995)

 Data and control flow coupling
 di = number of input data parameters
 ci = number of input control parameters
 do = number of output data parameters
 co = number of output control parameters

 Global coupling
 gd = number of global variables used as data
 gc = number of global variables used as control

 Environmental coupling
 w = number of modules called (fan-out)
 r = number of modules calling the module

under consideration (fan-in)
1-
40

DHAMA (1995)

 Coupling metric (mc)
mc = k/M, where k = 1
M = di + a* ci + do + b* co + c* gc + w + r
where a=b=c=2

1-
41

COUPLING METRIC - EXAMPLE MODULE 1

Package sort1 is

type array_type is arrary (1..1000) of integer;

procedure sort1 (n: in integer;

 to_be_sorted: in out array_type;

 a_or_d: in character) is

location, temp: integer;

begin

 for start in 1..n loop

 location := start;

loop to get min or max each time

for i in (start + 1)..n loop

 if a_or_d = ‘d’ then

 if to_be_sorted(i) > to_be_sorted(location) then

 location := i;

 endif;

 else if to_be_sorted(i) < to_be_sorted(location) then

 location := i;

 endif

endloop;

 temp := to_be_sorted(start);

 to_be_sorted(start) := to_be_sorted(location);

 to_be_sorted(location) := temp;

endloop

1-
42

COUPLING METRIC - EXAMPLE
MODULE2

Package sort2 is

type array_type is arrary (1..1000) of integer;

Procedure sort2 (n: in integer;

 to_be_sorted: in out array_type;

 a_or_d: in character);

procedure find_max (n: in integer;

 to_be_sorted: in out array_type;

 location: in out integer);

procedure find_min (n, start: in integer;

 to_be_sorted: in out array_type;

 location: in out integer);

procedure exchange (start: in integer;

 to_be_sorted: in out array_type;

 location: in out integer);

endsort2;

1-
43

COUPLING METRIC - EXAMPLE

1-
44

procedure find_max (n, start : in
integer; to_be_sorted: in out
array_type; location: in out
integer); is

begin

 location := start;

 for i in start + 1..n loop

 if to_be_sorted(i) >
 to_be_sorted(location)
then

 location := i;

 endif;

 endloop

end find_max;

procedure find_min (n, start: in
integer; to_be_sorted: in out
array_type; location: in out
integer) is

begin

 location := start;

 for i in start + 1..n loop

 if to_be_sorted(i) <
 to_be_sorted(location)
then

 location := i;

 endif;

 endloop

end find_min;

COUPLING METRIC - EXAMPLE

1-
45

procedure exchange (start: in
integer; to_be_sorted: in out
array_type; location: in out
integer) is

temp: integer;

begin

temp := to_be_sorted(start);

to_be_sorted(start) :=
to_be_sorted(location);

to_be_sorted(location) := temp;

end exchange;

Procedure sort2 (n: in integer;

 to_be_sorted: in out array_type;

 a_or_d: in character)is

location : integer;

begin

 for start in 1..n loop

 if a_or_d = ‘d’ then

 find_max(n, start, to_be_sorted,
 location);

 else

 find_min(n, start, to_be_sorted,
 location);

 endif;

 exchange(start, to_be_sorted,
 location);

 endloop;

end sort2;

end sort2;

MCCABE (1976)

 Cyclomatic Complexity (V(G))
 V(G) = the number of region of the flow graph

 + the area outside the graph
 V(G) = E - N + 2
 where E = the number of flow graph edges
 N = the number of flow graph nodes
 V(G) = P + 1
 where P = the number of predicate nodes

1-
46

FLOW GRAPH NOTATION

1-
47

CASE
Sequence IF

While

Until

CYCLOMATIC COMPLEXITY - EXAMPLE

1-
48

1

2

3

4

5

6

7 8
9

10

11

1

2,3

4, 5 6

7 8

9 10

11

Edge Node

R1

R4
Region

R2

R3

METRICS FOR TESTING

 Size of the software
 High-level design metric
 Cyclomatic complexity

1-
49

METRICS FOR MAINTENANCE

 Fix Backlog and Backlog Management Index

 Fix Response Time

 Percent Delinquent Fixes

 Fix Quality

 Software Maturity Index (SMI)

1-
50

FIX BACKLOG AND BACKLOG MANAGEMENT
INDEX

 Fix backlog is a work load statement for software

maintenance.

 It is a simple count of reported problems that remain

opened at the end of each month or each week.

 Backlog management index (BMI)

1-
51

BMI =
Number of problems closed during the month
Number of problem arrivals during the month

X 100%

FIX RESPONSE TIME

 Fix response time metric

 = Mean time of all problems from open

 to closed

1-
52

PERCENT DELINQUENT FIXES

 For each fix, if the turnaround time exceeds the

response time criteria by severity, then it is

classified as delinquent

 Percent delinquent fixes =

1-
53

Number of fixes that exceeds the fix response time
criteria by severity level

Total number of fixes delivered in a specified time
X 100%

FIX QUALITY

 Fix quality or the number of defective fixes metric = the

percentage of all fixes in a time interval that are

defective.

 A fix is defective if it did not fix the problem that was

reported, or if it fixed the original problem but injected a

new defect.

 A defective fix can be recorded in the month it was

discovered or in the month when the fix was delivered.

1-
54

SOFTWARE MATURITY INDEX (SMI)

 SMI = [MT - (Fa + Fc + Fd)]/ MT

 MT = the number of modules in the current
release

 Fc = the number of modules in the current
release that have been changed

 Fa = the number of modules in the current
release that have been added

 Fd = the number of modules from the
preceding release that were deleted in the
current release

1-
55

SOFTWARE METRICS ETIQUETTE

 Use common sense and organizational sensitivity when
interpreting metrics data.

 Provide regular feedback to the individuals and teams who
have worked to collect measures and metrics.

 Don’t use metrics to appraise individuals
 Work with practitioners and teams to set clear goals and

metrics that will be used to achieve them.
 Never use metrics to threaten individuals or teams.
 Metrics data that indicate a problem area should not be

considered “negative”. These data are merely an indicator
for process improvement.

 Don’t obsess on a single metric to the exclusion of other
important metrics.

1-
56

