
SOFTWARE ENGINEERING

LECTURE-14

Metrics

TOPICS COVERED

 Introduction

 Attributes Of Effective Software Metrics

 Metrics for SRS Attributes

 Component-level Design Metrics

1-3

DEFINITION

 Measure: A quantitative indication of the
 extent, amount, dimensions, capacity, or
size of some attribute of a product or
process.

 Metric: A quantitative measure of the degree
 to which a system, component, or
 process possesses a given attribute.

 A comparison of 2 or more measures.
 Indicator:A metric or combination of metrics

 that provide insight into the software
 process, a software project or the
 product.

1-4

WHY DO WE MEASURE?

 To understand what is happening during

development and maintenance.

 To control what is happening on our projects.

 To improve our process and products.

1-5

A GOOD MANAGER MEASURES

1-6

measurement

What do we

 use as a

 basis?

 • size?

 • function?

project metrics

process metrics
process

product

product metrics

PROCESS METRICS
 majority focus on quality achieved as a consequence

of a repeatable or managed process

 statistical SQA data

 error categorization & analysis

 defect removal efficiency

 propagation from phase to phase

1-7

1-8

Defect Removal Efficiency

DRE = (errors) / (errors + defects)

where

errors = problems found before release

defects = problems found after release

PROJECT METRICS
 Objectives:

 To minimize the development schedule

 To assess product quality on an ongoing basis.

 Examples:

 Effort/time per SE task

 Errors uncovered per review hour

 Scheduled vs. actual milestone dates

 Changes (number) and their characteristics

 Distribution of effort on SE tasks

1-9

PRODUCT METRICS
 Objectives:

 focus on the quality of deliverables

 Examples:

 measures of analysis model

 complexity of the design

internal algorithmic complexity
architectural complexity
data flow complexity

 code measures (e.g., Halstead)

 measures of process effectiveness

e.g., defect removal efficiency

1-
10

MEASUREMENT PROCESS

 Formulation
 Collection
 Analysis
 Interpretation
 Feedback

1-
11

FORMULATION PRINCIPLES

 The objectives of measurement should be established
before data collection begins

 Each technical metric should be defined in an
unambiguous manner.

 Metrics should be derived based on a theory that is
valid for the domain of application.

 Metrics should be tailored to best accommodate
specific products and processes.

1-
12

COLLECTION & ANALYSIS PRINCIPLES

 Whenever possible, data collection and analysis
should be automated.

 Valid statistical techniques should be applied to

establish relationships between internal product
attributes and external quality characteristics.

 Interpretative guidelines and recommendations
should be established for each metric.

1-
13

ATTRIBUTES OF EFFECTIVE SOFTWARE
METRICS

 Simple and Computable
 Empirically and Intuitively
 Consistent and Objective
 Programming language independent
 An effective mechanism for quality feedback

1-
14

MEASURING SOFTWARE QUALITY: MCCALL’S
QUALITY FACTORS

1-
15

 Product Operation

 Correctness

 Reliability

 Usability

 Integrity

 Efficiency

 Product Revision

 Maintainability

 Testability

 Flexibility

 Product Transition

 Reusability

 Portability

 Interoperability

MEASURING SOFTWARE QUALITY: MCCALL’S
QUALITY FACTORS

1-
16

Reliability

 Consistency

 Accuracy

 Error-tolerance

 Simplicity

Maintainability

 Concision

 Consistency

 Modularity

 Self-documentation

 simplicity

MEASURING QUALITY IN SOFTWARE
REQUIREMENTS SPECIFICATION (SRS)

1-
17

 Unambiguous
 Complete
 Correct
 Understandable
 Verifiable
 Internally consistent
 Externally consistent
 Achievable
 Concise
 Design independent
 Traceable
 Modifiable

 Electronically stored
 Executable/Interpretable
 Annotated by relative importance
 Annotated by relative stability
 Annotated by version
 Not redundant
 At right level of detail
 Precise
 Reusable
 Traced
 Organized
 Cross-referenced

METRICS FOR SRS ATTRIBUTES

 nf = functional requirements
 nnf = non-functional requirements

 nr = total requirements = nf + nnf

1-
18

UNAMBIGUOUS

 A SRS is unambiguous if and only if every

requirement stated therein has only one possible
interpretation.

 Metric:

 nui is the number of requirements for which all
reviewers presented identical interpretations.

 0 - every requirement has multiple interpretation
 1 - every requirement has a unique interpretation

1-
19

Q1
n
n
ui

r

COMPLETENESS

 A SRS is complete if everything that the software is
supposed to do is included in the SRS.

 Metric:

 nA is the number of requirements in block A

1-
20

Q 2
n
n
A

r

CORRECTNESS

 A SRS is correct if and only if every requirement

represents something required of the system to be
built

 Metric:

 nC is the number of correct requirements
 nI is the number of incorrect requirements

1-
21

Q 3
n
n n

C

C I

UNDERSTANDABLE

 A SRS is understandable if all classes of SRS

readers can easily comprehend the meaning of all
requirements with a minimum of explanation.

 Metric:

nur is the number of requirements for which all reviewers
thought they understood.

1-
22

Q 4
n
n
ur

r

CONCISE

 A SRS is concise if it is as short as possible without
adversely affecting any other quality of the SRS.

 Metric:

 size is the number of pages

1-
23

Q 5
1

1

size

NOT REDUNDANT

 A SRS is redundant if the same requirement is stated
more than one.

 Metric:

 nf is the actual functions specified
 nu is the actual unique functions specified

1-
24

Q 6
n
n
f

u

HIGH-LEVEL DESIGN METRICS

 High-level design metrics focus on characteristics of

the program architecture with an emphasis on the

architectural structural and the effectiveness of
modules

 Metrics:
 Card and Glass (1990)
 Henry and Kafura (1981)
 Fenton (1991)

1-
25

CARD AND GLASS (1990)

 3 software design complexity measures:
 structural complexity
 data complexity
 system complexity

1-
26

CARD AND GLASS (1990)

 Structural complexity (S(i))

where fout is the fan-out of module i

 Data complexity (D(i))

where v(i) is the number of input and output variables that are
passed to and from module i

 System complexity (C(i))

1-
27

S i f iout() () 2

D i v i f iout() () / [()] 2 1

C i S i D i() () ()

HENRY & KAFURA (1981)

where length (i) = the number of programming language
statements in module i
 fin(i) = the number of fan-in of module i
 fout(i) = the number of fan-out of module i

 fan-in = the number of local flows of information that

terminate at a module + the number of data structures
from which information is retrieved.

 Fan-out = the number of local flows of information that

emanate from a module plus_the number of data
structures that are updated by that module

1-
28

Complexity length i f i f iin out () [() ()]2

1-
29

WC

FD CW DR

GDN RD FWS PW

DOC

name doc
err

name

doc doc

doc

doc doc
doc

doc, cw

wc wc

FENTON (1991)

 Measure of the connectivity density of the architecture

and a simple indication of the coupling of the
architecture.
 r = a/n
 r = arc-to-node ratio
 a = the number of arcs (lines of control)
 n = the number of nodes (modules)

 Depth = the longest path from the root (top) to a leaf
node

 Width = maximum number of nodes at any one level of
the architecture

1-
30

COMPONENT-LEVEL DESIGN METRICS

 Cohesion Metrics
 Bieman and Ott (1994)

 Coupling Metrics
 Dhama (1995)

 Complexity Metrics
 McCabe (1976)

1-
31

BIEMAN AND OTT (1994)

 Data slice is a backward walk through a module that

looks for data values that affect the module location at
which the walk began.

 Data token are variables and constants defined for a
module.

 Glue tokens are data tokens that lie on one or more
data slice.

 Superglue tokens are the data tokens that are common
to every data slice in a module.

1-
32

BIEMAN AND OTT (1994)

 Strong functional cohesion (SFC)
SFC(i) = SG(SA(i))/tokens (i)

SG(SA(i)) = superglue tokens

1-
33

PROCEDURE SUM AND PRODUCT

(N : Integer;

 Var SumN, ProdN : Integer);

Var I : Integer

Begin

 SumN : = 0;

 ProdN : = 1;

 For I : = 1 to N do begin

 SumN : = SumN + I

 ProdN: = ProdN + I

 End;
End; 1-

34

1-
35

Data Slide for SumN
(N : Integer;

 Var SumN, ProdN : Integer);

Var I : Integer

Begin

 SumN : = 0;

 ProdN : = 1;

 For I : = 1 to N do begin

 SumN : = SumN + I

 ProdN: = ProdN + I

 End;

End;

Data Slice for SumN = N1·SumN1·I1·SumN2·01·I2·12·N2·SumN3·SumN4·I3

(N : Integer;

 Var SumN, ProdN : Integer);

Var I : Integer

Begin

 SumN : = 0;

 ProdN : = 1;

 For I : = 1 to N do begin

 SumN : = SumN + I

 ProdN: = ProdN + I

 End;

End;

1-
36

Data Slide for ProdN

Data Slice for ProdN = N1·ProdN1·I1·ProdN2·11·I2·12·N2·ProdN3·ProdN4·I4

Data token SumN ProdN

N1

SumN1

ProdN1

I1

SumN2

01

ProdN2

11

I2

12

N2

SumN3

SumN4

I3

ProdN3

ProdN4

I4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1-
37

SUPER GLUE

 S1 S2 S3

 I I I Super Glue

 I

 I

 I

 I I I Super Glue

 I

 I I Glue

 I I Glue

1-
38

FUNCTIONAL COHESION

 Strong functional cohesion (SFC)
SFC(i) = SG(SA(i))/tokens (i)
SG(SA(i)) = superglue tokens
SG(SumAndProduct) = 5/17 = 0.204

1-
39

DHAMA (1995)

 Data and control flow coupling
 di = number of input data parameters
 ci = number of input control parameters
 do = number of output data parameters
 co = number of output control parameters

 Global coupling
 gd = number of global variables used as data
 gc = number of global variables used as control

 Environmental coupling
 w = number of modules called (fan-out)
 r = number of modules calling the module

under consideration (fan-in)
1-
40

DHAMA (1995)

 Coupling metric (mc)
mc = k/M, where k = 1
M = di + a* ci + do + b* co + c* gc + w + r
where a=b=c=2

1-
41

COUPLING METRIC - EXAMPLE MODULE 1

Package sort1 is

type array_type is arrary (1..1000) of integer;

procedure sort1 (n: in integer;

 to_be_sorted: in out array_type;

 a_or_d: in character) is

location, temp: integer;

begin

 for start in 1..n loop

 location := start;

loop to get min or max each time

for i in (start + 1)..n loop

 if a_or_d = ‘d’ then

 if to_be_sorted(i) > to_be_sorted(location) then

 location := i;

 endif;

 else if to_be_sorted(i) < to_be_sorted(location) then

 location := i;

 endif

endloop;

 temp := to_be_sorted(start);

 to_be_sorted(start) := to_be_sorted(location);

 to_be_sorted(location) := temp;

endloop

1-
42

COUPLING METRIC - EXAMPLE
MODULE2

Package sort2 is

type array_type is arrary (1..1000) of integer;

Procedure sort2 (n: in integer;

 to_be_sorted: in out array_type;

 a_or_d: in character);

procedure find_max (n: in integer;

 to_be_sorted: in out array_type;

 location: in out integer);

procedure find_min (n, start: in integer;

 to_be_sorted: in out array_type;

 location: in out integer);

procedure exchange (start: in integer;

 to_be_sorted: in out array_type;

 location: in out integer);

endsort2;

1-
43

COUPLING METRIC - EXAMPLE

1-
44

procedure find_max (n, start : in
integer; to_be_sorted: in out
array_type; location: in out
integer); is

begin

 location := start;

 for i in start + 1..n loop

 if to_be_sorted(i) >
 to_be_sorted(location)
then

 location := i;

 endif;

 endloop

end find_max;

procedure find_min (n, start: in
integer; to_be_sorted: in out
array_type; location: in out
integer) is

begin

 location := start;

 for i in start + 1..n loop

 if to_be_sorted(i) <
 to_be_sorted(location)
then

 location := i;

 endif;

 endloop

end find_min;

COUPLING METRIC - EXAMPLE

1-
45

procedure exchange (start: in
integer; to_be_sorted: in out
array_type; location: in out
integer) is

temp: integer;

begin

temp := to_be_sorted(start);

to_be_sorted(start) :=
to_be_sorted(location);

to_be_sorted(location) := temp;

end exchange;

Procedure sort2 (n: in integer;

 to_be_sorted: in out array_type;

 a_or_d: in character)is

location : integer;

begin

 for start in 1..n loop

 if a_or_d = ‘d’ then

 find_max(n, start, to_be_sorted,
 location);

 else

 find_min(n, start, to_be_sorted,
 location);

 endif;

 exchange(start, to_be_sorted,
 location);

 endloop;

end sort2;

end sort2;

MCCABE (1976)

 Cyclomatic Complexity (V(G))
 V(G) = the number of region of the flow graph

 + the area outside the graph
 V(G) = E - N + 2
 where E = the number of flow graph edges
 N = the number of flow graph nodes
 V(G) = P + 1
 where P = the number of predicate nodes

1-
46

FLOW GRAPH NOTATION

1-
47

CASE
Sequence IF

While

Until

CYCLOMATIC COMPLEXITY - EXAMPLE

1-
48

1

2

3

4

5

6

7 8
9

10

11

1

2,3

4, 5 6

7 8

9 10

11

Edge Node

R1

R4
Region

R2

R3

METRICS FOR TESTING

 Size of the software
 High-level design metric
 Cyclomatic complexity

1-
49

METRICS FOR MAINTENANCE

 Fix Backlog and Backlog Management Index

 Fix Response Time

 Percent Delinquent Fixes

 Fix Quality

 Software Maturity Index (SMI)

1-
50

FIX BACKLOG AND BACKLOG MANAGEMENT
INDEX

 Fix backlog is a work load statement for software

maintenance.

 It is a simple count of reported problems that remain

opened at the end of each month or each week.

 Backlog management index (BMI)

1-
51

BMI =
Number of problems closed during the month
Number of problem arrivals during the month

X 100%

FIX RESPONSE TIME

 Fix response time metric

 = Mean time of all problems from open

 to closed

1-
52

PERCENT DELINQUENT FIXES

 For each fix, if the turnaround time exceeds the

response time criteria by severity, then it is

classified as delinquent

 Percent delinquent fixes =

1-
53

Number of fixes that exceeds the fix response time
criteria by severity level

Total number of fixes delivered in a specified time
X 100%

FIX QUALITY

 Fix quality or the number of defective fixes metric = the

percentage of all fixes in a time interval that are

defective.

 A fix is defective if it did not fix the problem that was

reported, or if it fixed the original problem but injected a

new defect.

 A defective fix can be recorded in the month it was

discovered or in the month when the fix was delivered.

1-
54

SOFTWARE MATURITY INDEX (SMI)

 SMI = [MT - (Fa + Fc + Fd)]/ MT

 MT = the number of modules in the current
release

 Fc = the number of modules in the current
release that have been changed

 Fa = the number of modules in the current
release that have been added

 Fd = the number of modules from the
preceding release that were deleted in the
current release

1-
55

SOFTWARE METRICS ETIQUETTE

 Use common sense and organizational sensitivity when
interpreting metrics data.

 Provide regular feedback to the individuals and teams who
have worked to collect measures and metrics.

 Don’t use metrics to appraise individuals
 Work with practitioners and teams to set clear goals and

metrics that will be used to achieve them.
 Never use metrics to threaten individuals or teams.
 Metrics data that indicate a problem area should not be

considered “negative”. These data are merely an indicator
for process improvement.

 Don’t obsess on a single metric to the exclusion of other
important metrics.

1-
56

