SOFTWARE ENGINEERING

. ECTURE-14

.‘ Metrics
»

Torics COVERED

Introduction
Attributes Of Effective Software Metrics

Metrics for SRS Attributes
Component-level Design Metrics

DEFINITION

Measure: A guantitative indication of the

extent, amount, dimensions, capacity, or
size of some attribute of a product or
process.
Metric: A quantitative measure of the degree

to which a system, component, or
pProcess possesses a given attribute.

A comparison of 2 or more measures.

Indicator:A metric or combination of metrics
that provide insight into the software
process, a software project or the
product.

1-4

WHY Do WE MEASURE?

To understand what is happening during
development and maintenance.

To control what is happening on our projects.
To improve our process and products.

A Goob MANAGER MEASURES

process :
\ / process metrics

_—» project metrics
measurement

-

% product metrics

product

PROCESS METRICS

majority focus on quality achieved as a consequence
of a repeatable or managed process

statistical SQA data
error categorization & analysis

defect removal efficiency
propagation from phase to phase

1-7

Defect Removal Efficiency

DRE = (errors) / (errors + defects)

where
errors = problems found before release
defects = problems found after release

1-8

PROJECT METRICS

Objectives:
To minimize the development schedule

To assess product quality on an ongoing basis.

Examples:
Effort/time per SE task
Errors uncovered per review hour
Scheduled vs. actual milestone dates
Changes (number) and their characteristics
Distribution of effort on SE tasks

1-9

PRODUCT METRICS

Objectives:
focus on the quality of deliverables

Examples:

measures of analysis model

complexity of the design
Internal algorithmic complexity
architectural complexity
data flow complexity

code measures (e.g., Halstead)

measures of process effectiveness

e.g., defect removal efficiency

10

MEASUREMENT PROCESS

Formulation
Collection
Analysis
Interpretation
Feedback

11

FORMULATION PRINCIPLES

The objectives of measurement should be established
before data collection begins

Each technical metric should be defined in an
unambiguous manner.

Metrics should be derived based on a theory that is
valid for the domain of application.

Metrics should be tailored to best accommodate
specific products and processes.

12

COLLECTION & ANALYSIS PRINCIPLES

Whenever possible, data collection and analysis
should be automated.

Valid statistical technigues should be applied to

establish relationships between internal product
attributes and external quality characteristics.

Interpretative guidelines and recommendations
should be established for each metric.

13

ATTRIBUTES OF EFFECTIVE SOFTWARE
METRICS

Simple and Computable

Empirically and Intuitively

Consistent and Objective

Programming language independent

An effective mechanism for quality feedback

14

MEASURING SOFTWARE QUALITY: MCCALL'S

QUALITY FACTORS

Product Operation
Correctness
Reliability
Usability
Integrity
Efficiency

Product Revision
Maintainability
Testabllity
Flexibility

Product Transition
Reusability

Portability
Interoperability

15

MEASURING SOFTWARE QUALITY: MCCALL'S

QUALITY FACTORS

Reliability
Consistency
Accuracy
Error-tolerance
Simplicity

Maintainability
Concision
Consistency
Modularity

Self-documentation
simplicity

16

MEASURING QUALITY IN SOFTWARE
REQUIREMENTS SPECIFICATION (SRS)

Unambiguous
Complete

Correct
Understandable
Verifiable

Internally consistent
Externally consistent
Achievable

Concise

Design independent
Traceable
Modifiable

Electronically stored
Executable/Interpretable
Annotated by relative importance
Annotated by relative stability
Annotated by version

Not redundant

At right level of detall

Precise

Reusable

Traced

Organized

Cross-referenced 11;

METRICS FOR SRS ATTRIBUTES

n, = functional requirements
N = non-functional requirements

n, =total requirements = n; + N

18

UNAMBIGUOUS

A SRS is unambiguous if and only if every

requirement stated therein has only one possible
Interpretation.

Metric:
Q | Nui
- Nr

n, Is the number of requirements for which all
reviewers presented identical interpretations.

0- every requirement has multiple interpretation
1- every requirement has a unique interpretation

19

COMPLETENESS

A SRS is complete if everything that the software is
supposed to do is included in the SRS.

Metric: Q 4
‘=

n,is the number of requirements in block A

20

CORRECTNESS

A SRS is correct if and only if every requirement

represents something required of the system to be
built

Metric:

nc
Q 3= Acnn

Nn¢ is the number of correct requirements
n,is the number of incorrect requirements

21

UNDERSTANDABLE

A SRS iIs understandable if all classes of SRS

readers can easily comprehend the meaning of all
requirements with a minimum of explanation.

Metric:

Q4— Nur

n, IS the number of requh’g‘ﬁents for which all reviewers
thought they understood.

22

CONCISE

A SRS is concise if it Is as short as possible without
adversely affecting any other quality of the SRS.

Metric:
]
Q5=
size+1

size is the number of pages

23

NOT REDUNDANT

A SRS is redundant if the same requirement is stated
more than one.

Metric:
ny
Qs - i

n; is the actual functions specified
n, is the actual unique functions specified

24

HIGH-LEVEL DESIGN METRICS

High-level design metrics focus on characteristics of
the program architecture with an emphasis on the
architectural structural and the effectiveness of
modules

Metrics:
Card and Glass (1990)
Henry and Kafura (19s1)
Fenton (1991)

25

CARD AND GLASS (1990)

3 software design complexity measures:
structural complexity
data complexity
system complexity

26

CARD AND GLASS (1990)

Structural complexity (S(iy

S@) = £, (i)

where f, is the fan-out of module |
Data complexity (D(iy

i) 5 0 G h]
where v(i) g e num [d output variables that are

passed to and from module i
System complexity (C(iy

C(i) = S(i) + D(i) 5

HENRY & KAFURA (1981)

Complexity = length(i) <[£, () + f,,, (DT

where length (i) = the number of programming language
statements in module |

f..a) = the number of fan-in of module i
fou1) = the number of fan-out of module |

fan-in = the number of local flows of information that

terminate at a module + the number of data structures
from which information is retrieved.

Fan-out = the number of local flows of information that

emanate from a module plus_the number of data
structures that are updated by that module

28

WC

o~ d\\v e

D CW DR
I name I
name| do doc Noc, C
A\ 00 N o
GDN RD FWS PW
I doc

FENTON (1991)

Measure of the connectivity density of the architecture
and a simple indication of the coupling of the
architecture.
r=aln
r = arc-to-node ratio
a = the number of arcs (lines of control)
n = the number of nodes (modules)

Depth = the longest path from the root (top) to a leaf
node

Width = maximum number of nodes at any one level of

the architecture
1-
30

COMPONENT-LEVEL DESIGN METRICS

Cohesion Metrics
Bieman and Ott (1994)

Coupling Metrics
Dhama (1995)

Complexity Metrics
McCabe (1976)

31

BIEMAN AND OTT (1994)

Data slice is a backward walk through a module that
looks for data values that affect the module location at
which the walk began.

Data token are variables and constants defined for a
module.

Glue tokens are data tokens that lie on one or more
data slice.

Superglue tokens are the data tokens that are common
to every data slice in a module.

32

BIEMAN AND OTT (1994)

Strong functional cohesion (SFC)
SFC(i) = SG(SA(i))/tokens (i

SG(SA(i)) = superglue tokens

33

PROCEDURE SUM AND PRODUCT

(N : Integer,;

Var SumN, ProdN : Integer);
Var | : Integer
Begin

SumN :=0;

ProdN =1;

For | .= 1to N dobegin
SumN:= SumN + |
ProdN: = ProdN + |

End;

End:

34

(. . Integer;
Var SUmMN, ProdN : Integer);
Var I : Integer
Begin

SumN :=0;

ProdN 1= 1;

For @ := @to N do begin

ProdN: = ProdN + |
End:
End:

Data Slice for SumN = Nl-Sule-Il-SumNZ-Ol-I2-12-N2-SumN3-Sum‘

(" :Integer;
Var SumN, . Integer);
Var : Integer
Begin

SumN . =0;

For ;= to do begin

SumN:= SumN + |
. = +

End;

End;

Data Slice for ProdN = Nl-ProdNl-Il-Prosz-ll-I2-12-N2-ProdN3-Prod§s£4-l4

Data token SumN ProdN
N, 1 1
SumN;, 1
ProdN, 1
l, 1 1
SumN, 1
0, 1
ProdN, 1
1, 1
l, 1 1
1, 1 1
N, 1 1
SumN;, 1
SumN, 1
I 1
ProdN, 1
ProdN, 1
L, 1 1

SUPER GLUE

Super Glue

Super Glue

Glue
Glue

38

FUNCTIONAL COHESION

Strong functional cohesion (SFC)
SFC(i) = SG(SA(i))/tokens (i
SG(SA() = superglue tokens
SG(SumAndProduct) =5/17=0.204

39

DHAMA (1995)

Data and control flow coupling
d. = number of input data parameters

c; = number of input control parameters

d, = number of output data parameters

C, = humber of output control parameters
Global coupling

g4 = humber of global variables used as data

g. = number of global variables used as control
Environmental coupling

w = number of modules called (fan-out)

r = number of modules calling the module

under consideration (fan-in)

40

DHAMA (1995)

Coupling metric (m,)

m, = k/M, where k=1
M=d+a*c,+d,+b*c,+c*g.+w+r
where a=b=c=:

41

MODULE 1 COUPLING METRIC - EXAMPLE

Package sortlis
type array_type is arrary (1..1000) of integer,;
procedure sortl (n: in integer,;
to_be sorted: in out array_type;
a_or_d: in character) is
location, temp: integer;
begin
for startin 1..n loop
location := start;

loop to get min or max each time
foriin (start + 1)..n loop
ifa_or_d =‘d’ then
if to_be_sorted(i) >to_be_sorted(location) then

location :=1i;
endif;
elseif to_be sorted(i) <to_be sorted(location) then
location :=1i;
endif
endloop;
temp :=to_be sorted(start); :’;

to_be_sorted(start) :=to_be_sorted(location);
to_be_sorted(location) := temp;
endloob

COUPLING METRIC - EXAMPLE

MODULE2

Package sort2 is

type array_type is arrary (1..1000) of integer;

Procedure sort2 (n: in integer,;
to_be sorted: in out array_type;
a_or_d: in character);

procedure find_max (n: in integer,;
to_be sorted: in out array_type;
location: in out integer);

procedure find_min (n, start: in integer;
to_be sorted: in out array_type;
location: in out integer);

procedure exchange (start: in integer;
to_be sorted: in out array_type;
location: in out integer);

endsort2,;

43

COUPLING METRIC - EXAMPLE

procedure find_max (n, start: in - procedure find_min (n, start: in
integer; to_be_sorted: in out integer; to_be_sorted: in out
array_type; location: in out array_type; location: in out
integer); is integer) is
begin begin
location := start; location := start;
foriin start + 1..n loop foriin start + 1..n loop
if to_be_sorted(i) > | if to_be_sorted(i) <
to_be_sorted(location) to_be_sorted(location)
then then
location = ; location :=i:
endif; endif;
endloop endloop
end find_max; end find_min; 1-

44

COUPLING METRIC - EXAMPLE

procedure exchange (start: in
Integer; to_be_sorted: in out
array_type; location: in out
integer) is

temp: integer;
begin
temp :=to_be_sorted(start);

to_be_sorted(start) :=
to_be_sorted(location);

to_be_sorted(location) := temp;
end exchange;

Procedure sort2 (n: in integer;
to_be_ sorted: in out array_type;
a_or_d: in character)is

location :

integer;

for start in 1..n loop
ifa_or _d="'d then

find_max(n, start, to_be sorted,

else

endif;

location);
find_min(n, start, to_be_sorted,
location);
exchange(start, to_be_sorted,
location);
endloop; 1-
end sort2; 45

end sort2:

McCCABE (1976)

Cyclomatic Complexity (V(G))

V(G) = the number of region of the flow graph
+ the area outside the graph

V(G)=E-N+2
where E = the number of flow graph edges
N = the number of flow graph nodes
V(G) =P+
where P = the number of predicate nodes

46

FLoOwW GRAPH NOTATION

Sequence

CYCLOMATIC COMPLEXITY - EXAMPLE

®

METRICS FOR TESTING

Size of the software
High-level design metric
Cyclomatic complexity

49

METRICS FOR MAINTENANCE

Fix Backlog and Backlog Management Index
Fix Response Time

Percent Delinquent Fixes

Fix Quality

Software Maturity Index (SMI)

50

FIX BACKLOG AND BACKLOG MANAGEMENT
INDEX

Fix backlog is a work load statement for software
maintenance.

It is a simple count of reported problems that remain
opened at the end of each month or each week.

Backlog management index (BMI)

Number of problems closed during the month % 10094

Number of problem arrivals during the month (2

BMI=

FIX RESPONSE TIME

FiX response time metric

= Mean time of all problems from open
to closed

52

PERCENT DELINQUENT FIXES

For each fix, if the turnaround time exceeds the
response time criteria by severity, then it is
classified as delinguent

Percent delinquent fixes =

Number of fixes that exceeds the fix response time
criteria by severity level

0
Total number of fixes delivered in a specified time X 10078

53

FIX QUALITY

Fix quality or the number of defective fixes metric = the
percentage of all fixes in a time interval that are
defective.

A fix is defective If it did not fix the problem that was
reported, or if it fixed the original problem but injected a
new defect.

A defective fix can be recorded in the month it was
discovered or in the month when the fix was delivered.

54

SOFTWARE MATURITY INDEX (SMI)

SMI = [My - (F, + F¢ + Fy)l/ My

M; = the number of modules in the current
release

F. =the number of modules in the current
release that have been changed

F, = the number of modules in the current
release that have been added

Fq = the number of modules from the
preceding release that were deleted in the
current release

55

SOFTWARE METRICS ETIQUETTE

Use common sense and organizational sensitivity when
Interpreting metrics data.

Provide regular feedback to the individuals and teams who
have worked to collect measures and metrics.

Don’t use metrics to appraise individuals

Work with practitioners and teams to set clear goals and
metrics that will be used to achieve them.

Never use metrics to threaten individuals or teams.

Metrics data that indicate a problem area should not be

considered “negative”. These data are merely an indicator
for process improvement.

Don’t obsess on a single metric to the exclusion of othéer-
important metrics. 20

