
SOFTWARE ENGINEERING

LECTURE-13

ANALYSIS MODELING

TOPICS COVERED

- Requirements analysis

- Flow-oriented modeling

- Scenario-based modeling

- Class-based modeling

- Behavioral modeling

GOALS OF ANALYSIS MODELING

 Provides the first technical representation of a system

 Is easy to understand and maintain

 Deals with the problem of size by partitioning the system

 Uses graphics whenever possible

 Differentiates between essential information versus

implementation information

 Helps in the tracking and evaluation of interfaces

 Provides tools other than narrative text to describe software

logic and policy

A SET OF MODELS

 Flow-oriented modeling – provides an indication of how data
objects are transformed by a set of processing functions

 Scenario-based modeling – represents the system from the
user's point of view

 Class-based modeling – defines objects, attributes, and
relationships

 Behavioral modeling – depicts the states of the classes and
the impact of events on these states

REQUIREMENTS ANALYSIS

PURPOSE

 Specifies the software's operational characteristics

 Indicates the software's interfaces with other system elements

 Establishes constraints that the software must meet

 Provides the software designer with a representation of
information, function, and behavior

 This is later translated into architectural, interface, class/data and
component-level designs

 Provides the developer and customer with the means to assess
quality once the software is built

OVERALL OBJECTIVES

 Three primary objectives

 To describe what the customer requires

 To establish a basis for the creation of a software design

 To define a set of requirements that can be validated once the
software is built

 All elements of an analysis model are directly traceable to parts
of the design model, and some parts overlap

ANALYSIS RULES OF THUMB

 The analysis model should focus on requirements that are visible within
the problem or business domain

 The level of abstraction should be relatively high

 Each element of the analysis model should add to an overall
understanding of software requirements and provide insight into the
following

 Information domain, function, and behavior of the system

 The model should delay the consideration of infrastructure and other
non-functional models until the design phase

 First complete the analysis of the problem domain

 The model should minimize coupling throughout the system

 Reduce the level of interconnectedness among functions and classes

 The model should provide value to all stakeholders

 The model should be kept as simple as can be

DOMAIN ANALYSIS

 Definition

 The identification, analysis, and specification of common, reusable
capabilities within a specific application domain

 Do this in terms of common objects, classes, subassemblies, and
frameworks

 Sources of domain knowledge

 Technical literature

 Existing applications

 Customer surveys and expert advice

 Current/future requirements

 Outcome of domain analysis

 Class taxonomies

 Reuse standards

 Functional and behavioral models

 Domain languages

ANALYSIS MODELING APPROACHES

 Structured analysis

 Considers data and the processes that transform the data as

separate entities

 Data is modeled in terms of only attributes and relationships (but

no operations)

 Processes are modeled to show the 1) input data, 2) the

transformation that occurs on that data, and 3) the resulting

output data

 Object-oriented analysis

 Focuses on the definition of classes and the manner in which

they collaborate with one another to fulfill customer requirements

ELEMENTS OF THE ANALYSIS MODEL

Use case text

Use case diagrams

Activity diagrams

Swim lane diagrams

Scenario-based

modeling

Class diagrams

Analysis packages

CRC models

Collaboration diagrams

Class-based

modeling

Data structure diagrams

Data flow diagrams

Control-flow diagrams

Processing narratives

Flow-oriented

modeling

State diagrams

Sequence diagrams

Behavioral

modeling

Structured Analysis Object-oriented Analysis

FLOW-ORIENTED MODELING

DATA MODELING

 Identify the following items

 Data objects (Entities)

 Data attributes

 Relationships

 Cardinality (number of occurrences)

DATA FLOW AND CONTROL FLOW

 Data Flow Diagram

 Depicts how input is transformed into output as data

objects move through a system

 Process Specification

 Describes data flow processing at the lowest level of

refinement in the data flow diagrams

 Control Flow Diagram

 Illustrates how events affect the behavior of a system

through the use of state diagrams

DIAGRAM LAYERING AND PROCESS

REFINEMENT

Context-level diagram

Level 1 diagram

Process Specification

SCENARIO-BASED MODELING

WRITING USE CASES

 Writing of use cases was previously described in
Chapter 7 – Requirements Engineering

 It is effective to use the first person “I” to describe how the actor
interacts with the software

 Format of the text part of a use case

(See examples in Pressman textbook on pp. 188-189)

Use-case title:

Actor:

Description: I …

EXAMPLE USE CASE DIAGRAM

Make automated menu

selections

Order food and drink

Pay for food and drink

Notify customer that

food and drink are ready
Customer

Cook

Payment

System

Expert Menu

System

ACTIVITY DIAGRAMS

 Creation of activity diagrams was previously described in
Chapter 7 – Requirements Engineering

 Supplements the use case by providing a graphical
representation of the flow of interaction within a specific scenario

 Uses flowchart-like symbols

 Rounded rectangle - represent a specific system function/action

 Arrow - represents the flow of control from one function/action to
another

 Diamond - represents a branching decision

 Solid bar – represents the fork and join of parallel activities

EXAMPLE ACTIVITY DIAGRAM
Set counter = positive n

Set accumulator = initial value

n > 1

Set accumulator = accumulator * n

Set n = n - 1

(n mod 5) == 0

Display accumulator value

Return accumulator value

T

F

T

F

CLASS-BASED MODELING

IDENTIFYING ANALYSIS CLASSES

1) Perform a grammatical parse of the problem statement or use cases

2) Classes are determined by underlining each noun or noun clause

3) A class required to implement a solution is part of the solution space

4) A class necessary only to describe a solution is part of the problem

space

5) A class should NOT have an imperative procedural name (i.e., a

verb)

6) List the potential class names in a table and "classify" each class

according to some taxonomy and class selection characteristics

7) A potential class should satisfy nearly all (or all) of the selection

characteristics to be considered a legitimate problem domain class

(More on next slide)

Potential classes General

classification

Selection

Characteristics

IDENTIFYING ANALYSIS CLASSES

(CONTINUED)

 General classifications for a potential class

 External entity (e.g., another system, a device, a person)

 Thing (e.g., report, screen display)

 Occurrence or event (e.g., movement, completion)

 Role (e.g., manager, engineer, salesperson)

 Organizational unit (e.g., division, group, team)

 Place (e.g., manufacturing floor, loading dock)

 Structure (e.g., sensor, vehicle, computer)

(More on next slide)

IDENTIFYING ANALYSIS CLASSES (CONTINUED)

 Six class selection characteristics

1) Retained information

– Information must be remembered about the system over time

2) Needed services

– Set of operations that can change the attributes of a class

3) Multiple attributes

– Whereas, a single attribute may denote an atomic variable rather than a
class

4) Common attributes

– A set of attributes apply to all instances of a class

5) Common operations

– A set of operations apply to all instances of a class

6) Essential requirements

– Entities that produce or consume information

DEFINING ATTRIBUTES OF A CLASS

 Attributes of a class are those nouns from the grammatical parse
that reasonably belong to a class

 Attributes hold the values that describe the current properties or
state of a class

 An attribute may also appear initially as a potential class that is later
rejected because of the class selection criteria

 In identifying attributes, the following question should be answered

 What data items (composite and/or elementary) will fully define a
specific class in the context of the problem at hand?

 Usually an item is not an attribute if more than one of them is to be
associated with a class

DEFINING OPERATIONS OF A CLASS

 Operations define the behavior of an object

 Four categories of operations

 Operations that manipulate data in some way to change the state of an
object (e.g., add, delete, modify)

 Operations that perform a computation

 Operations that inquire about the state of an object

 Operations that monitor an object for the occurrence of a controlling
event

 An operation has knowledge about the state of a class and the
nature of its associations

 The action performed by an operation is based on the current values
of the attributes of a class

 Using a grammatical parse again, circle the verbs; then select the
verbs that relate to the problem domain classes that were previously
identified

EXAMPLE CLASS BOX

Component

+ componentID

- telephoneNumber

- componentStatus

- delayTime

- masterPassword

- numberOfTries

+ program()

+ display()

+ reset()

+ query()

- modify()

+ call()

Class Name

Attributes

Operations

ASSOCIATION, GENERALIZATION AND

DEPENDENCY (REF: FOWLER)

 Association

 Represented by a solid line between two classes directed from the
source class to the target class

 Used for representing (i.e., pointing to) object types for attributes

 May also be a part-of relationship (i.e., aggregation), which is
represented by a diamond-arrow

 Generalization

 Portrays inheritance between a super class and a subclass

 Is represented by a line with a triangle at the target end

 Dependency

 A dependency exists between two elements if changes to the definition
of one element (i.e., the source or supplier) may cause changes to the
other element (i.e., the client)

 Examples

 One class calls a method of another class

 One class utilizes another class as a parameter of a method

EXAMPLE CLASS DIAGRAM

1..n

Production

Manager

Auditor Record

Keeper

Report

Generator

Transaction

Processor

Account

Accounts

Payable

Accounts

Receivable

Input

Verifier

Error Log Input Handler

Local File

Handler

Remote File

Handler

Account List

Accountant

BEHAVIORAL MODELING

CREATING A BEHAVIORAL MODEL

1) Identify events found within the use cases and implied by the

attributes in the class diagrams

2) Build a state diagram for each class, and if useful, for the

whole software system

IDENTIFYING EVENTS IN USE CASES

 An event occurs whenever an actor and the system exchange

information

 An event is NOT the information that is exchanged, but rather

the fact that information has been exchanged

 Some events have an explicit impact on the flow of control,

while others do not

 An example is the reading of a data item from the user versus

comparing the data item to some possible value

BUILDING A STATE DIAGRAM

 A state is represented by a rounded rectangle

 A transition (i.e., event) is represented by a labeled arrow leading
from one state to another
 Syntax: trigger-signature [guard]/activity

 The active state of an object indicates the current overall status
of the object as is goes through transformation or processing

 A state name represents one of the possible active states of an
object

 The passive state of an object is the current value of all of an
object's attributes

 A guard in a transition may contain the checking of the passive state
of an object

EXAMPLE STATE DIAGRAM

Empty

Stack

Partially

Filled Stack

Full Stack

push [n = 0]

pop [n = 1]

push [n - 1 = max]

push [n – 2 < max]

pop [n > 1]

pop [n = max]

pop / set n to 0; return error

push / set n to max; return error

SUMMARY:

ELEMENTS OF THE ANALYSIS MODEL

Use case text

Use case diagrams

Activity diagrams

Swim lane diagrams

Scenario-based

modeling

Class diagrams

Analysis packages

CRC models

Collaboration diagrams

Class-based

modeling

Data flow diagrams

Control-flow diagrams

Processing narratives

Flow-oriented

modeling

State diagrams

Sequence diagrams

Behavioral

modeling

Structured Analysis Object-oriented Analysis

