
SOFTWARE ENGINEERING

LECTURE 12

SOFTWARE PRODUCT METRICS

TOPICS COVERED

- Software quality

- A framework for product metrics

- A product metrics taxonomy

- Metrics for the analysis model

- Metrics for the design model

- Metrics for maintenance

EXAMPLES OF METRICS FROM EVERYDAY LIFE

 Working and living

 Cost of utilities for the month
 Cost of groceries for the month
 Amount of monthly rent per month
 Time spent at work each Saturday for the past month
 Time spent mowing the lawn for the past two times

 College experience
 Grades received in class last semester
 Number of classes taken each semester
 Amount of time spent in class this week
 Amount of time spent on studying and homework this week
 Number of hours of sleep last night

 Travel
 Time to drive from home to the airport
 Amount of miles traveled today
 Cost of meals and lodging for yesterday

WHY HAVE SOFTWARE PRODUCT METRICS?

 Help software engineers to better understand the attributes of
models and assess the quality of the software

 Help software engineers to gain insight into the design and
construction of the software

 Focus on specific attributes of software engineering work products
resulting from analysis, design, coding, and testing

 Provide a systematic way to assess quality based on a set of
clearly defined rules

 Provide an “on-the-spot” rather than “after-the-fact” insight into the
software development

SOFTWARE QUALITY

SOFTWARE QUALITY DEFINED
 Definition:

Conformance to explicitly stated functional and performance
requirements, explicitly documented development standards, and
implicit characteristics that are expected of all professionally
developed software

 Three important points in this definition
 Explicit software requirements are the foundation from which quality is

measured. Lack of conformance to requirements is lack of quality

 Specific standards define a set of development criteria that guide the
manner in which software is engineered. If the criteria are not followed,
lack of quality will most surely result

 There is a set of implicit requirements that often goes unmentioned (e.g.,
ease of use). If software conforms to its explicit requirements but fails to
meet implicit requirements, software quality is suspect

PROPERTIES OF SOFTWARE QUALITY FACTORS

 Some factors can be directly measured (e.g. defects uncovered

during testing)

 Other factors can be measured only indirectly (e.g., usability or

maintainability)

 Software quality factors can focus on three important aspects

 Product operation: Its operational characteristics

 Product revision: Its ability to undergo change

 Product transition: Its adaptability to new environments

ISO 9126 SOFTWARE QUALITY FACTORS

 Functionality

 The degree to which the software satisfies stated needs

 Reliability

 The amount of time that the software is available for use

 Usability

 The degree to which the software is easy to use

 Efficiency

 The degree to which the software makes optimal use of system resources

 Maintainability

 The ease with which repair and enhancement may be made to the software

 Portability

 The ease with which the software can be transposed from one environment
to another

A FRAMEWORK FOR

PRODUCT METRICS

MEASURES, METRICS, AND INDICATORS

 These three terms are often used interchangeably, but they can
have subtle differences

 Measure

 Provides a quantitative indication of the extent, amount, dimension,
capacity, or size of some attribute of a product or process

 Measurement

 The act of determining a measure

 Metric

 (IEEE) A quantitative measure of the degree to which a system,
component, or process possesses a given attribute

 Indicator

 A metric or combination of metrics that provides insight into the
software process, a software project, or the product itself

PURPOSE OF PRODUCT METRICS

 Aid in the evaluation of analysis and design models

 Provide an indication of the complexity of procedural designs

and source code

 Facilitate the design of more effective testing techniques

 Assess the stability of a fielded software product

ACTIVITIES OF A MEASUREMENT

PROCESS

 Formulation
 The derivation (i.e., identification) of software measures and metrics

appropriate for the representation of the software that is being
considered

 Collection
 The mechanism used to accumulate data required to derive the

formulated metrics

 Analysis
 The computation of metrics and the application of mathematical

tools

 Interpretation
 The evaluation of metrics in an effort to gain insight into the quality

of the representation

 Feedback
 Recommendations derived from the interpretation of product metrics

and passed on to the software development team

CHARACTERIZING AND VALIDATING

METRICS

 A metric should have desirable mathematical properties

 It should have a meaningful range (e.g., zero to ten)

 It should not be set on a rational scale if it is composed of components
measured on an ordinal scale

 If a metric represents a software characteristic that increases when
positive traits occur or decreases when undesirable traits are
encountered, the value of the metric should increase or decrease in the
same manner

 Each metric should be validated empirically in a wide variety of
contexts before being published or used to make decisions

 It should measure the factor of interest independently of other factors

 It should scale up to large systems

 It should work in a variety of programming languages and system domains

COLLECTION AND ANALYSIS GUIDELINES

 Whenever possible, data collection and analysis should be

automated

 Valid statistical techniques should be applied to establish

relationships between internal product attributes and external

quality characteristics

 Interpretative guidelines and recommendations should be

established for each metric

GOAL-ORIENTED SOFTWARE MEASUREMENT

 Goal/Question/Metric (GQM) paradigm

 GQM technique identifies meaningful metrics for any part of the
software process

 GQM emphasizes the need to

 Establish an explicit measurement goal that is specific to the
process activity or product characteristic that is to be assessed

 Define a set of questions that must be answered in order to achieve
the goal

 Identify well-formulated metrics that help to answer these questions

 GQM utilizes a goal definition template to define each
measurement goal

(More on next slide)

GOAL-ORIENTED SOFTWARE MEASUREMENT

(CONTINUED)

 Example use of goal definition template

Analyze the SafeHome software architecture for the purpose
of evaluating architecture components. Do this with respect to
the ability to make SafeHome more extensible from the
viewpoint of the software engineers, who are performing the
work in the context of product enhancement over the next
three years.

 Example questions for this goal definition

1) Are architectural components characterized in a manner that
compartmentalizes function and related data?

2) Is the complexity of each component within bounds that will
facilitate modification and extension?

ATTRIBUTES OF EFFECTIVE SOFTWARE

METRICS

 Simple and computable

 It should be relatively easy to learn how to derive the metric, and

its computation should not demand inordinate effort or time

 Empirically and intuitively persuasive

 The metric should satisfy the engineer’s intuitive notions about

the product attribute under consideration

 Consistent and objective

 The metric should always yield results that are unambiguous

(More on next slide)

ATTRIBUTES OF EFFECTIVE SOFTWARE

METRICS (CONTINUED)

 Consistent in the use of units and dimensions

 The mathematical computation of the metric should use measures

that do not lead to bizarre combinations of units

 Programming language independent

 Metrics should be based on the analysis model, the design model, or

the structure of the program itself

 An effective mechanism for high-quality feedback

 The metric should lead to a higher-quality end product

A PRODUCT METRICS TAXONOMY

METRICS FOR THE ANALYSIS MODEL

 Functionality delivered

 Provides an indirect measure of the functionality that is packaged within

the software

 System size

 Measures the overall size of the system defined in terms of information

available as part of the analysis model

 Specification quality

 Provides an indication of the specificity and completeness of a

requirements specification

METRICS FOR THE DESIGN MODEL

 Architectural metrics

 Provide an indication of the quality of the architectural design

 Component-level metrics

 Measure the complexity of software components and other characteristics

that have a bearing on quality

 Interface design metrics

 Focus primarily on usability

 Specialized object-oriented design metrics

 Measure characteristics of classes and their communication and

collaboration characteristics

METRICS FOR SOURCE CODE

 Complexity metrics

 Measure the logical complexity of source code (can also be applied to

component-level design)

 Length metrics

 Provide an indication of the size of the software

“These metrics can be used to assess source code complexity,

 maintainability, and testability, among other characteristics”

METRICS FOR TESTING

 Statement and branch coverage metrics

 Lead to the design of test cases that provide program coverage

 Defect-related metrics

 Focus on defects (i.e., bugs) found, rather than on the tests themselves

 Testing effectiveness metrics

 Provide a real-time indication of the effectiveness of tests that have been

conducted

 In-process metrics

 Process related metrics that can be determined as testing is conducted

METRICS FOR THE

ANALYSIS MODEL
Function Points

INTRODUCTION TO FUNCTION POINTS

 First proposed by Albrecht in 1979; hundreds of books and papers
have been written on functions points since then

 Can be used effectively as a means for measuring the functionality
delivered by a system

 Using historical data, function points can be used to

 Estimate the cost or effort required to design, code, and test the
software

 Predict the number of errors that will be encountered during testing

 Forecast the number of components and/or the number of projected
source code lines in the implemented system

 Derived using an empirical relationship based on

1) Countable (direct) measures of the software’s information domain

2) Assessments of the software’s complexity

INFORMATION DOMAIN VALUES
 Number of external inputs

 Each external input originates from a user or is transmitted from another

application

 They provide distinct application-oriented data or control information

 They are often used to update internal logical files

 They are not inquiries (those are counted under another category)

 Number of external outputs

 Each external output is derived within the application and provides

information to the user

 This refers to reports, screens, error messages, etc.

 Individual data items within a report or screen are not counted separately

(More on next slide)

INFORMATION DOMAIN VALUES (CONTINUED)

 Number of external inquiries

 An external inquiry is defined as an online input that results in the

generation of some immediate software response

 The response is in the form of an on-line output

 Number of internal logical files

 Each internal logical file is a logical grouping of data that resides within the

application’s boundary and is maintained via external inputs

 Number of external interface files

 Each external interface file is a logical grouping of data that resides

external to the application but provides data that may be of use to the

application

FUNCTION POINT COMPUTATION
1) Identify/collect the information domain values

2) Complete the table shown below to get the count total

• Associate a weighting factor (i.e., complexity value) with each count

based on criteria established by the software development

organization

3) Evaluate and sum up the adjustment factors (see the next two

slides)

• “Fi” refers to 14 value adjustment factors, with each ranging in value

from 0 (not important) to 5 (absolutely essential)

4) Compute the number of function points (FP)

FP = count total * [0.65 + 0.01 * sum(Fi)]
Information Weighting Factor

Domain Value Count Simple Average Complex

External Inputs _____ x 3 4 6 = _____

External Outputs _____ x 4 5 7 = _____

External Inquiries _____ x 3 4 6 = _____

Internal Logical Files _____ x 7 10 15 = _____

External Interface Files _____ x 5 7 10 = _____

Count total ________

VALUE ADJUSTMENT FACTORS

1) Does the system require reliable backup and recovery?

2) Are specialized data communications required to transfer
information to or from the application?

3) Are there distributed processing functions?

4) Is performance critical?

5) Will the system run in an existing, heavily utilized
operational environment?

6) Does the system require on-line data entry?

7) Does the on-line data entry require the input transaction to
be built over multiple screens or operations?

(More on next slide)

VALUE ADJUSTMENT FACTORS (CONTINUED)

8) Are the internal logical files updated on-line?

9) Are the inputs, outputs, files, or inquiries complex?

10) Is the internal processing complex?

11) Is the code designed to be reusable?

12) Are conversion and installation included in the design?

13) Is the system designed for multiple installations in different

organizations?

14) Is the application designed to facilitate change and for ease

of use by the user?

FUNCTION POINT EXAMPLE

 FP = count total * [0.65 + 0.01 * sum(Fi)]

 FP = 50 * [0.65 + (0.01 * 46)]

 FP = 55.5 (rounded up to 56)

Information Weighting Factor

Domain Value Count Simple Average Complex

External Inputs 3 x 3 4 6 = 9

External Outputs 2 x 4 5 7 = 8

External Inquiries 2 x 3 4 6 = 6

Internal Logical Files 1 x 7 10 15 = 7

External Interface Files 4 x 5 7 10 = 20

Count total 50

INTERPRETATION OF THE FP NUMBER

 Assume that past project data for a software development
group indicates that

 One FP translates into 60 lines of object-oriented source code

 12 FPs are produced for each person-month of effort

 An average of three errors per function point are found during
analysis and design reviews

 An average of four errors per function point are found during unit
and integration testing

 This data can help project managers revise their earlier
estimates

 This data can also help software engineers estimate the
overall implementation size of their code and assess the
completeness of their review and testing activities

METRICS FOR THE

DESIGN MODEL

ARCHITECTURAL DESIGN METRICS

 These metrics place emphasis on the architectural structure

and effectiveness of modules or components within the

architecture

 They are “black box” in that they do not require any

knowledge of the inner workings of a particular software

component

HIERARCHICAL ARCHITECTURE METRICS

 Fan out: the number of modules immediately subordinate to the
module i, that is, the number of modules directly invoked by module i

 Structural complexity

 S(i) = f2out(i), where fout(i) is the “fan out” of module i

 Data complexity

 D(i) = v(i)/[fout(i) + 1], where v(i) is the number of input and
output variables that are passed to and from module i

 System complexity
 C(i) = S(i) + D(i)

 As each of these complexity values increases, the overall architectural
complexity of the system also increases

 This leads to greater likelihood that the integration and testing effort will
also increase

HIERARCHICAL ARCHITECTURE METRICS

(CONTINUED)

 Shape complexity

 size = n + a, where n is the number of nodes and a is the

number of arcs

 Allows different program software architectures to be compared

in a straightforward manner

 Connectivity density (i.e., the arc-to-node ratio)

 r = a/n

 May provide a simple indication of the coupling in the software

architecture

METRICS FOR OBJECT-ORIENTED DESIGN

 Size

 Population: a static count of all classes and methods

 Volume: a dynamic count of all instantiated objects at a given time

 Length: the depth of an inheritance tree

 Coupling

 The number of collaborations between classes or the number of
methods called between objects

 Cohesion

 The cohesion of a class is the degree to which its set of properties is
part of the problem or design domain

 Primitiveness

 The degree to which a method in a class is atomic (i.e., the method
cannot be constructed out of a sequence of other methods provided
by the class)

SPECIFIC CLASS-ORIENTED METRICS

 Weighted methods per class

 The normalized complexity of the methods in a class

 Indicates the amount of effort to implement and test a class

 Depth of the inheritance tree

 The maximum length from the derived class (the node) to the base
class (the root)

 Indicates the potential difficulties when attempting to predict the
behavior of a class because of the number of inherited methods

 Number of children (i.e., subclasses)

 As the number of children of a class grows

 Reuse increases

 The abstraction represented by the parent class can be diluted by
inappropriate children

 The amount of testing required will increase

(More on next slide)

SPECIFIC CLASS-ORIENTED METRICS

(CONTINUED)

 Coupling between object classes

 Measures the number of collaborations a class has with any other classes

 Higher coupling decreases the reusability of a class

 Higher coupling complicates modifications and testing

 Coupling should be kept as low as possible

 Response for a class

 This is the set of methods that can potentially be executed in a class in
response to a public method call from outside the class

 As the response value increases, the effort required for testing also
increases as does the overall design complexity of the class

 Lack of cohesion in methods

 This measures the number of methods that access one or more of the same
instance variables (i.e., attributes) of a class

 If no methods access the same attribute, then the measure is zero

 As the measure increases, methods become more coupled to one another
via attributes, thereby increasing the complexity of the class design

METRICS FOR MAINTENANCE

METRICS FOR MAINTENANCE

 Software maturity index (SMI)

 Provides an indication of the stability of a software product based on
changes that occur for each release

 SMI = [MT - (Fa + Fc + Fd)]/MT
where
MT = #modules in the current release
Fa = #modules in the current release that have been added
Fc = #modules in the current release that have been changed
Fd = #modules from the preceding release that were deleted in
 the current release

 As the SMI (i.e., the fraction) approaches 1.0, the software product
begins to stabilize

 The average time to produce a release of a software product can be
correlated with the SMI



