

SOFTWARE ENGINEERING

 LECTURE 11
 Capability Maturity Model

 TOPICS COVERED

 CMM

 CMM Levels

 Process Maturity Concepts

WHAT IS CMM?

 CMM: Capability Maturity Model

 Developed by the Software Engineering Institute of

the Carnegie Mellon University

 Framework that describes the key elements of an

effective software process.

WHAT IS CMM?

 Describes an evolutionary improvement path for

software organizations from an ad hoc, immature

process to a mature, disciplined one.

 Provides guidance on how to gain control of

processes for developing and maintaining software

and how to evolve toward a culture of software

engineering and management excellence.

PROCESS MATURITY CONCEPTS

Software Process
 set of activities, methods, practices, and

transformations that people use to develop and
maintain software and the associated products
(e.g., project plans, design documents, code, test
cases, user manuals)

Software Process Capability
 describes the range of expected results that can be

achieved by following a software process

 means of predicting the most likely outcomes to be
expected from the next software project the
organization undertakes

PROCESS MATURITY CONCEPTS

Software Process Performance
 actual results achieved by following a software

process

Software Process Maturity
 extent to which a specific process is explicitly

defined, managed, measured, controlled and
effective

 implies potential growth in capability

 indicates richness of process and consistency
with which it is applied in projects throughout the
organization

WHAT ARE THE CMM LEVELS?

(THE FIVE LEVELS OF SOFTWARE PROCESS

MATURITY)

Maturity level indicates level of process capability:

 Initial

 Repeatable

 Defined

 Managed

 Optimizing

LEVEL 1: INITIAL

Initial : The software process is characterized
as ad hoc, and occasionally even chaotic. Few
processes are defined, and success depends
on individual effort.
At this level, frequently have difficulty making

commitments that the staff can meet with an orderly
process

Products developed are often over budget and
schedule

Wide variations in cost, schedule, functionality and
quality targets

Capability is a characteristic of the individuals, not of
the organization

LEVEL 2: REPEATABLE

Basic process management processes are
established to track cost, schedule, and
functionality. The necessary process discipline
is in place to repeat earlier successes on
projects with similar applications.
Realistic project commitments based on results

observed on previous projects

Software project standards are defined and
faithfully followed

Processes may differ between projects

Process is disciplined

earlier successes can be repeated

LEVEL 3: DEFINED

 The software process for both management and

engineering activities is documented, standardized,

and integrated into a standard software process for

the organization. All projects use an approved,

tailored version of the organization’s standard

software process for developing an maintaining

software.

LEVEL 4: MANAGED

Detailed measures of the software process

and product quality are collected. Both the

software process and products are

quantitatively understood and controlled.

Narrowing the variation in process performance to

fall within acceptable quantitative bounds

When known limits are exceeded, corrective action

can be taken

Quantifiable and predictable

predict trends in process and product quality

LEVEL 5: OPTIMIZING

Continuous process improvement is
enabled by quantitative feedback from the
process and from piloting innovative ideas
and technologies.

Goal is to prevent the occurrence of defects
Causal analysis

Data on process effectiveness used for cost
benefit analysis of new technologies and
proposed process changes

INTERNAL STRUCTURE TO MATURITY LEVELS

Except for level 1, each level is
decomposed into key process areas (KPA)

Each KPA identifies a cluster of related
activities that, when performed collectively,
achieve a set of goals considered important
for enhancing software capability.
 commitment

 ability

 activity

 measurement

 verification

LEVEL 2 KPAS

Requirements Management
 Establish common understanding of customer

requirements between the customer and the
software project

 Requirements is basis for planning and managing
the software project

 Not working backwards from a given release date!

Software Project Planning
 Establish reasonable plans for performing the

software engineering activities and for managing
the software project

LEVEL 2 KPAS

Software Project Tracking and Oversight
 Establish adequate visibility into actual progress

 Take effective actions when project’s
performance deviates significantly from planned

Software Subcontract Management
 Manage projects outsourced to subcontractors

Software Quality Assurance
 Provide management with appropriate visibility

into
 process being used by the software projects

work products

LEVEL 2 KPAS

 Software Configuration Management

 Establish and maintain the integrity of work products

 Product baseline

 Baseline authority

LEVEL 3 KPAS

Organization Process Focus

 Establish organizational responsibility for

software process activities that improve the

organization’s overall software process capability

Organization Process Definition

 Develop and maintain a usable set of software

process assets

 stable foundation that can be institutionalized

 basis for defining meaningful data for quantitative

process management

LEVEL 3 KPAS

Training Program
 Develop skills and knowledge so that individual can

perform their roles effectively and efficiently

 Organizational responsibility

 Needs identified by project

 Integrated Software Management
 Integrated engineering and management activities

 Engineering and management processes are
tailored from the organizational standard processes

 Tailoring based on business environment and
project needs

LEVEL 3 KPAS

Software Product Engineering
 technical activities of the project are well defined

(SDLC)

 correct, consistent work products

 Intergroup Coordination
 Software engineering groups participate actively

with other groups

Peer Reviews
 early defect detection and removal

 better understanding of the products

 implemented with inspections, walkthroughs, etc

LEVEL 4 KPAS

Quantitative Process Management

 control process performance quantitatively

 actual results from following a software process

 focus on identifying and correcting special causes

of variation with respect to a baseline process

Software Quality Management

 quantitative understanding of software quality

 products

 process

LEVEL 5 KPAS

Process Change Management
 continuous process improvement to improve

quality, increase productivity, decrease cycle
time

Technology Change Management
 identify and transfer beneficial new technologies

 tools

methods

 processes

Defect Prevention
 causal analysis of defects to prevent recurrence

WHAT ARE THE BENEFITS ?

Helps forge a shared vision of what software
process improvement means for the
organization

Defines set of priorities for addressing
software problems

Supports measurement of process by
providing framework for performing reliable
and consistent appraisals

Provides framework for consistency of
processes and product

WHY MEASURE SOFTWARE AND SOFTWARE

PROCESS?

Obtain data that helps us to better control

 schedule

 cost

 quality of software products

CONSISTENT MEASUREMENT PROVIDE DATA

FOR:

 Quantitatively expressing requirements, goals, and

acceptance criteria

 Monitoring progress and anticipating problems

 Quantifying tradeoffs used in allocating resources

 Predicting schedule, cost and quality

MEASUREMENTS

 Historical

 Plan

 Actual

 Projections

SEI CORE MEASURES

Unit of Measure Characteristics Addressed

Physical source lines of code
Logical source lines of code

Size, reuse, rework

Staff hours Effort, cost, resource allocations

Calendar dates for process
milestones
Calendar dates for deliverables

Schedule, progress

Problems and defects Quality, improvement trends,
rework, readiness for delivery

EXAMPLES OF MEASUREMENTS FOR SIZE OF

WORK PRODUCTS

 Estimated number of requirements

 Actual number of requirements

 Estimated source lines of code (SLOC)

 Actual SLOC

 Estimated number of test cases

 Actual number of test cases

EXAMPLE OF MEASUREMENTS OF EFFORT

 Estimated man-hours to design/code a given
module

 Actual man-hours expended for designing/coding
the module

 Estimated number of hours to run builds for a given
release

 Actual number of hours spent running builds for the
release

EXAMPLES OF MEASUREMENTS OF QUALITY

OF THE WORK PRODUCT

 Number of issues raised at requirements inspection

 Number of requirements issues open

 Number of requirements issues closed

 Number of issues raised during code inspection

 Number of defects opened during unit testing

EXAMPLES OF MEASUREMENTS OF QUALITY

OF THE WORK PRODUCT

 Number of defects opened during system testing

 Number of defects opened during UAT

 Number of defects still open

 Number of defects closed

 Defect age

EXAMPLES OF MEASUREMENTS OF QUALITY

OF THE WORK PRODUCT

 Total number of build failures

 Total number of defects fixed for a given release

 Total number of defects verified and accepted

 Total number of defects verified and rejected

