

SOFTWARE ENGINEERING

 LECTURE 11
 Capability Maturity Model

 TOPICS COVERED

 CMM

 CMM Levels

 Process Maturity Concepts

WHAT IS CMM?

 CMM: Capability Maturity Model

 Developed by the Software Engineering Institute of

the Carnegie Mellon University

 Framework that describes the key elements of an

effective software process.

WHAT IS CMM?

 Describes an evolutionary improvement path for

software organizations from an ad hoc, immature

process to a mature, disciplined one.

 Provides guidance on how to gain control of

processes for developing and maintaining software

and how to evolve toward a culture of software

engineering and management excellence.

PROCESS MATURITY CONCEPTS

Software Process
 set of activities, methods, practices, and

transformations that people use to develop and
maintain software and the associated products
(e.g., project plans, design documents, code, test
cases, user manuals)

Software Process Capability
 describes the range of expected results that can be

achieved by following a software process

 means of predicting the most likely outcomes to be
expected from the next software project the
organization undertakes

PROCESS MATURITY CONCEPTS

Software Process Performance
 actual results achieved by following a software

process

Software Process Maturity
 extent to which a specific process is explicitly

defined, managed, measured, controlled and
effective

 implies potential growth in capability

 indicates richness of process and consistency
with which it is applied in projects throughout the
organization

WHAT ARE THE CMM LEVELS?

(THE FIVE LEVELS OF SOFTWARE PROCESS

MATURITY)

Maturity level indicates level of process capability:

 Initial

 Repeatable

 Defined

 Managed

 Optimizing

LEVEL 1: INITIAL

Initial : The software process is characterized
as ad hoc, and occasionally even chaotic. Few
processes are defined, and success depends
on individual effort.
At this level, frequently have difficulty making

commitments that the staff can meet with an orderly
process

Products developed are often over budget and
schedule

Wide variations in cost, schedule, functionality and
quality targets

Capability is a characteristic of the individuals, not of
the organization

LEVEL 2: REPEATABLE

Basic process management processes are
established to track cost, schedule, and
functionality. The necessary process discipline
is in place to repeat earlier successes on
projects with similar applications.
Realistic project commitments based on results

observed on previous projects

Software project standards are defined and
faithfully followed

Processes may differ between projects

Process is disciplined

earlier successes can be repeated

LEVEL 3: DEFINED

 The software process for both management and

engineering activities is documented, standardized,

and integrated into a standard software process for

the organization. All projects use an approved,

tailored version of the organization’s standard

software process for developing an maintaining

software.

LEVEL 4: MANAGED

Detailed measures of the software process

and product quality are collected. Both the

software process and products are

quantitatively understood and controlled.

Narrowing the variation in process performance to

fall within acceptable quantitative bounds

When known limits are exceeded, corrective action

can be taken

Quantifiable and predictable

predict trends in process and product quality

LEVEL 5: OPTIMIZING

Continuous process improvement is
enabled by quantitative feedback from the
process and from piloting innovative ideas
and technologies.

Goal is to prevent the occurrence of defects
Causal analysis

Data on process effectiveness used for cost
benefit analysis of new technologies and
proposed process changes

INTERNAL STRUCTURE TO MATURITY LEVELS

Except for level 1, each level is
decomposed into key process areas (KPA)

Each KPA identifies a cluster of related
activities that, when performed collectively,
achieve a set of goals considered important
for enhancing software capability.
 commitment

 ability

 activity

 measurement

 verification

LEVEL 2 KPAS

Requirements Management
 Establish common understanding of customer

requirements between the customer and the
software project

 Requirements is basis for planning and managing
the software project

 Not working backwards from a given release date!

Software Project Planning
 Establish reasonable plans for performing the

software engineering activities and for managing
the software project

LEVEL 2 KPAS

Software Project Tracking and Oversight
 Establish adequate visibility into actual progress

 Take effective actions when project’s
performance deviates significantly from planned

Software Subcontract Management
 Manage projects outsourced to subcontractors

Software Quality Assurance
 Provide management with appropriate visibility

into
 process being used by the software projects

work products

LEVEL 2 KPAS

 Software Configuration Management

 Establish and maintain the integrity of work products

 Product baseline

 Baseline authority

LEVEL 3 KPAS

Organization Process Focus

 Establish organizational responsibility for

software process activities that improve the

organization’s overall software process capability

Organization Process Definition

 Develop and maintain a usable set of software

process assets

 stable foundation that can be institutionalized

 basis for defining meaningful data for quantitative

process management

LEVEL 3 KPAS

Training Program
 Develop skills and knowledge so that individual can

perform their roles effectively and efficiently

 Organizational responsibility

 Needs identified by project

 Integrated Software Management
 Integrated engineering and management activities

 Engineering and management processes are
tailored from the organizational standard processes

 Tailoring based on business environment and
project needs

LEVEL 3 KPAS

Software Product Engineering
 technical activities of the project are well defined

(SDLC)

 correct, consistent work products

 Intergroup Coordination
 Software engineering groups participate actively

with other groups

Peer Reviews
 early defect detection and removal

 better understanding of the products

 implemented with inspections, walkthroughs, etc

LEVEL 4 KPAS

Quantitative Process Management

 control process performance quantitatively

 actual results from following a software process

 focus on identifying and correcting special causes

of variation with respect to a baseline process

Software Quality Management

 quantitative understanding of software quality

 products

 process

LEVEL 5 KPAS

Process Change Management
 continuous process improvement to improve

quality, increase productivity, decrease cycle
time

Technology Change Management
 identify and transfer beneficial new technologies

 tools

methods

 processes

Defect Prevention
 causal analysis of defects to prevent recurrence

WHAT ARE THE BENEFITS ?

Helps forge a shared vision of what software
process improvement means for the
organization

Defines set of priorities for addressing
software problems

Supports measurement of process by
providing framework for performing reliable
and consistent appraisals

Provides framework for consistency of
processes and product

WHY MEASURE SOFTWARE AND SOFTWARE

PROCESS?

Obtain data that helps us to better control

 schedule

 cost

 quality of software products

CONSISTENT MEASUREMENT PROVIDE DATA

FOR:

 Quantitatively expressing requirements, goals, and

acceptance criteria

 Monitoring progress and anticipating problems

 Quantifying tradeoffs used in allocating resources

 Predicting schedule, cost and quality

MEASUREMENTS

 Historical

 Plan

 Actual

 Projections

SEI CORE MEASURES

Unit of Measure Characteristics Addressed

Physical source lines of code
Logical source lines of code

Size, reuse, rework

Staff hours Effort, cost, resource allocations

Calendar dates for process
milestones
Calendar dates for deliverables

Schedule, progress

Problems and defects Quality, improvement trends,
rework, readiness for delivery

EXAMPLES OF MEASUREMENTS FOR SIZE OF

WORK PRODUCTS

 Estimated number of requirements

 Actual number of requirements

 Estimated source lines of code (SLOC)

 Actual SLOC

 Estimated number of test cases

 Actual number of test cases

EXAMPLE OF MEASUREMENTS OF EFFORT

 Estimated man-hours to design/code a given
module

 Actual man-hours expended for designing/coding
the module

 Estimated number of hours to run builds for a given
release

 Actual number of hours spent running builds for the
release

EXAMPLES OF MEASUREMENTS OF QUALITY

OF THE WORK PRODUCT

 Number of issues raised at requirements inspection

 Number of requirements issues open

 Number of requirements issues closed

 Number of issues raised during code inspection

 Number of defects opened during unit testing

EXAMPLES OF MEASUREMENTS OF QUALITY

OF THE WORK PRODUCT

 Number of defects opened during system testing

 Number of defects opened during UAT

 Number of defects still open

 Number of defects closed

 Defect age

EXAMPLES OF MEASUREMENTS OF QUALITY

OF THE WORK PRODUCT

 Total number of build failures

 Total number of defects fixed for a given release

 Total number of defects verified and accepted

 Total number of defects verified and rejected

