
# SOFTWARE ENGINEERING



#### LEGIURE-IU

# RISK MANAGEMENT



# **TOPICS COVERED**

- **Introduction**
- Risk identification
- Risk projection (estimation)
  - Risk mitigation, monitoring, and management

### **DEFINITION OF RISK**

- A risk is a potential problem it might happen and it might not
- Conceptual definition of risk
  - Risk concerns future happenings
  - Risk involves change in mind, opinion, actions, places, etc.
  - Risk involves choice and the uncertainty that choice entails
- Two characteristics of risk
  - Uncertainty the risk may or may not happen, that is, there are no 100% risks (those, instead, are called constraints)
  - Loss the risk becomes a reality and unwanted consequences or losses occur

### RISK CATEGORIZATION - APPROACH #1

### Project risks

- They threaten the <u>project plan</u>
- If they become real, it is likely that the <u>project schedule</u> will slip and that costs will increase

#### Technical risks

- They threaten the <u>quality</u> and <u>timeliness</u> of the software to be produced
- If they become real, <u>implementation</u> may become difficult or impossible

#### Business risks

- They threaten the <u>viability</u> of the software to be built
- If they become real, they <u>jeopardize</u> the project or the product

# RISK CATEGORIZATION — APPROACH #1 (CONTINUED)

- Sub-categories of Business risks
  - Market risk building an excellent product or system that no one really wants
  - Strategic risk building a product that no longer fits into the overall business strategy for the company
  - Sales risk building a product that the sales force doesn't understand how to sell
  - Management risk losing the support of senior management due to a change in focus or a change in people
  - Budget risk losing budgetary or personnel commitment

# RISK CATEGORIZATION – APPROACH #2

#### Known risks

 Those risks that can be <u>uncovered</u> after careful evaluation of the project plan, the business and technical environment in which the project is being developed, and other reliable information sources (e.g., unrealistic delivery date)

#### Predictable risks

 Those risks that are <u>extrapolated</u> from past project experience (e.g., past turnover)

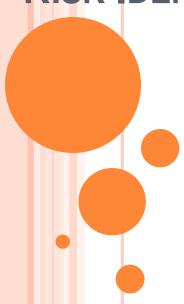
### Unpredictable risks

Those risks that can and do occur, but are extremely <u>difficult to identify</u> in advance

## REACTIVE VS. PROACTIVE RISK STRATEGIES

### Reactive risk strategies

- "Don't worry, I'll think of something"
- The majority of software teams and managers rely on this approach
- Nothing is done about risks until something goes wrong
  - The team then flies into action in an attempt to correct the problem rapidly (fire fighting)
- Crisis management is the choice of management techniques


### Proactive risk strategies

- Steps for risk management are followed (see next slide)
- Primary objective is to <u>avoid risk</u> and to have a <u>contingency plan</u> in place to handle unavoidable risks in a controlled and effective manner

### STEPS FOR RISK MANAGEMENT

- 1) <u>Identify</u> possible risks; recognize what can go wrong
- Analyze each risk to estimate the <u>probability</u> that it will occur and the <u>impact</u> (i.e., damage) that it will do if it does occur
- 3) Rank the risks by probability and impact
  - Impact may be negligible, marginal, critical, and catastrophic
- <u>Develop</u> a contingency plan to manage those risks having <u>high probability</u> and <u>high impact</u>

# RISK IDENTIFICATION



### BACKGROUND

- Risk identification is a systematic attempt to <u>specify threats</u> to the project plan
- By identifying known and predictable risks, the project manager takes a first step toward <u>avoiding</u> them when possible and <u>controlling</u> them when necessary
- Generic risks
  - Risks that are a potential threat to every software project
- Product-specific risks
  - Risks that can be identified only by those a with a <u>clear</u> <u>understanding</u> of the <u>technology</u>, the <u>people</u>, and the <u>environment</u> that is specific to the software that is to be built
  - This requires examination of the <u>project plan</u> and the <u>statement of scope</u>
  - "What special characteristics of this product may threaten our project plan?"

### RISK ITEM CHECKLIST

- Used as one way to identify risks
- Focuses on known and predictable risks in specific subcategories (see next slide)
- Can be organized in several ways
  - A <u>list</u> of characteristics relevant to each risk subcategory
  - Questionnaire that leads to an estimate on the impact of each risk
  - A <u>list</u> containing a set of risk component and drivers and their probability of occurrence

# KNOWN AND PREDICTABLE RISK CATEGORIES

- Product size risks associated with overall size of the software to be built
- Business impact risks associated with constraints imposed by management or the marketplace
- Customer characteristics risks associated with sophistication of the customer and the developer's ability to communicate with the customer in a timely manner
- Process definition risks associated with the degree to which the software process has been defined and is followed
- Development environment risks associated with availability and quality of the tools to be used to build the project
- Technology to be built risks associated with complexity of the system to be built and the "newness" of the technology in the system
- Staff size and experience risks associated with overall technical and project experience of the software engineers who will do the work

# QUESTIONNAIRE ON PROJECT RISK

(Questions are ordered by their relative importance to project success)

- Have top software and customer managers formally committed to support the project?
- Are end-users enthusiastically committed to the project and the system/product to be built?
- Are requirements fully understood by the software engineering team and its customers?
- 4) Have customers been involved fully in the definition of requirements?
- 5) Do end-users have realistic expectations?
- 6) Is the project scope stable?

# QUESTIONNAIRE ON PROJECT RISK (CONTINUED)

- 7) Does the software engineering team have the right mix of skills?
- 8) Are project requirements stable?
- Does the project team have experience with the technology to be implemented?
- Is the number of people on the project team adequate to do the job?
- Do all customer/user constituencies agree on the importance of the project and on the requirements for the system/product to be built?

## RISK COMPONENTS AND DRIVERS

- The project manager identifies the <u>risk drivers</u> that affect the following risk components
  - Performance risk the degree of uncertainty that the product will meet its requirements and be fit for its intended use
  - Cost risk the degree of uncertainty that the project budget will be maintained
  - Support risk the degree of uncertainty that the resultant software will be easy to correct, adapt, and enhance
  - Schedule risk the degree of uncertainty that the project schedule will be maintained and that the product will be delivered on time
- The impact of each risk driver on the risk component is divided into one of <u>four impact levels</u>
  - Negligible, marginal, critical, and catastrophic
- Risk drivers can be assessed as impossible, improbable, probable, and frequent

# RISK PROJECTION (ESTIMATION)

### BACKGROUND

- Risk projection (or estimation) attempts to <u>rate</u> each risk in two ways
  - The <u>probability</u> that the risk is real
  - The <u>consequence</u> of the problems associated with the risk, should it occur
- The project planner, managers, and technical staff perform four risk projection steps (see next slide)
- The intent of these steps is to consider risks in a manner that leads to prioritization
- Be prioritizing risks, the software team can allocate limited resources where they will have the most impact

# RISK PROJECTION/ESTIMATION STEPS

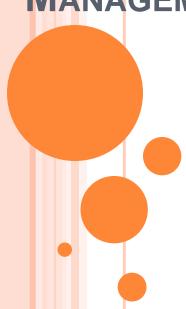
- Establish a scale that reflects the <u>perceived likelihood</u> of a risk (e.g., 1-low, 10-high)
- 2) Delineate the <u>consequences</u> of the risk
- 3) Estimate the <u>impact</u> of the risk on the project and product
- 4) Note the <u>overall accuracy</u> of the risk projection so that there will be no misunderstandings

# CONTENTS OF A RISK TABLE

- A risk table provides a project manager with a simple technique for risk projection
- It consists of five columns
  - Risk Summary short description of the risk
  - Risk Category one of seven risk categories (slide 12)
  - Probability estimation of risk occurrence based on group input
  - Impact (1) catastrophic (2) critical (3) marginal (4) negligible
  - RMMM Pointer to a paragraph in the Risk Mitigation, Monitoring, and Management Plan

| Risk Summary | Risk Category | Probability | Impact (1-4) | RMMM |
|--------------|---------------|-------------|--------------|------|
|              |               |             |              |      |
|              |               |             |              |      |
|              |               |             |              | 20   |

(More on next slide)


# DEVELOPING A RISK TABLE

- <u>List</u> all risks in the first column (by way of the help of the risk item checklists)
- Mark the category of each risk
- Estimate the probability of each risk occurring
- <u>Assess</u> the <u>impact</u> of each risk based on an averaging of the <u>four</u> <u>risk components</u> to determine an overall impact value (See next slide)
- Sort the rows by probability and impact in descending order
- <u>Draw</u> a horizontal cutoff line in the table that indicates the risks that will be given further attention

## ASSESSING RISK IMPACT

- Three factors affect the consequences that are likely if a risk does occur
  - Its nature This indicates the <u>problems</u> that are likely if the risk occurs
  - Its scope This combines the <u>severity</u> of the risk (how serious was it) with its overall <u>distribution</u> (how much was affected)
  - Its timing This considers <u>when</u> and for <u>how long</u> the impact will be felt
- The overall <u>risk exposure</u> formula is RE = P x C
  - P = the <u>probability</u> of occurrence for a risk
  - C = the cost to the project should the risk actually occur
- Example
  - P = 80% probability that 18 of 60 software components will have to be developed
  - C = Total cost of developing 18 components is \$25,000
  - RE = .80 x \$25,000 = \$20,000

# RISK MITIGATION, MONITORING, AND MANAGEMENT



### BACKGROUND

An effective strategy for dealing with risk must consider three issues

(Note: these are not mutually exclusive)

- Risk mitigation (i.e., avoidance)
- Risk monitoring
- Risk management and contingency planning
- Risk mitigation (avoidance) is the primary strategy and is achieved through a plan
  - Example: Risk of high staff turnover (see next slide)

# BACKGROUND (CONTINUED)

# Strategy for Reducing Staff Turnover

- Meet with current staff to <u>determine causes</u> for turnover (e.g., poor working conditions, low pay, competitive job market)
- <u>Mitigate</u> those causes that are under our control before the project starts
- Once the project commences, <u>assume</u> turnover will occur and <u>develop</u> techniques to ensure continuity when people leave
- Organize project teams so that information about each development activity is <u>widely dispersed</u>
- Define documentation standards and <u>establish</u> mechanisms to ensure that documents are developed in a timely manner
- Conduct peer reviews of all work (so that more than one person is "up to speed")
- Assign a backup staff member for every critical technologist

# BACKGROUND (CONTINUED)

- During <u>risk monitoring</u>, the project manager <u>monitors</u> factors that may provide an <u>indication</u> of whether a risk is becoming more or less likely
- Risk management and contingency planning <u>assume</u> that mitigation efforts have <u>failed</u> and that the risk has become a reality
- RMMM steps incur <u>additional</u> project cost
  - Large projects may have identified 30 40 risks
- Risk is <u>not limited</u> to the software project itself
  - Risks can occur after the software has been delivered to the user

# BACKGROUND (CONTINUED)

- Software safety and hazard analysis
  - These are <u>software quality assurance</u> activities that focus on the <u>identification</u> and <u>assessment</u> of potential hazards that may affect software negatively and cause an entire system to fail
  - If hazards can be <u>identified early</u> in the software process, software design features can be specified that will either <u>eliminate</u> or <u>control</u> potential hazards

### THE RMMM PLAN

- The RMMM plan may be a part of the software development plan (Paragraph 5.19.1) or may be a separate document
- Once RMMM has been documented and the project has begun, the risk mitigation, and monitoring steps begin
  - Risk <u>mitigation</u> is a problem <u>avoidance</u> activity
  - Risk monitoring is a project tracking activity
- Risk monitoring has <u>three</u> objectives
  - To <u>assess</u> whether predicted risks do, in fact, <u>occur</u>
  - To <u>ensure</u> that risk aversion steps defined for the risk are being properly <u>applied</u>
  - To <u>collect</u> information that can be used for <u>future</u> risk analysis
- The findings from risk monitoring may allow the project manager to ascertain what risks caused which problems throughout the project

# SEVEN PRINCIPLES OF RISK MANAGEMENT

### Maintain a global perspective

 View software risks within the context of a system and the business problem that is is intended to solve

### Take a forward-looking view

 Think about risks that may arise in the future; establish contingency plans

### Encourage open communication

Encourage all stakeholders and users to point out risks at any time

### Integrate risk management

Integrate the consideration of risk into the software process

### Emphasize a continuous process of risk management

 Modify identified risks as more becomes known and add new risks as better insight is achieved

### Develop a shared product vision

 A shared vision by all stakeholders facilitates better risk identification and assessment

### Encourage teamwork when managing risk

Pool the skills and experience of all stakeholders when conducting risk management activities.

### SUMMARY

- Whenever much is riding on a software project, common sense dictates risk analysis
  - Yet, most project managers do it informally and superficially, if at all
- However, the time spent in risk management results in
  - Less upheaval during the project
  - A greater ability to track and control a project
  - The <u>confidence</u> that comes with planning for problems before they occur
- Risk management can absorb a significant amount of the project planning effort...but the effort is worth it