Information Security System EC-415-F

6/30/2015

Lecture 4

Topics Covered

Network Security

Security Requirements

- Confidentiality
- Integrity
- Availability

Passive Attacks

- Eavesdropping on transmissions
- To obtain information
- Release of message contents
 - Outsider learns content of transmission
- Traffic analysis
 - By monitoring frequency and length of messages, even encrypted, nature of communication may be guessed
- Difficult to detect
- Can be prevented

Active Attacks

Masquerade

- Pretending to be a different entity
- Replay
- Modification of messages
- Denial of service
- Easy to detect
 - Detection may lead to deterrent
- Hard to prevent

Symmetric Encryption (Simplified)

Ingredients

- Plain text
- Encryption algorithm
- Secret key
- Cipher text
- Decryption algorithm

Requirements for Security

Strong encryption algorithm

- Even if known, should not be able to decrypt or work out key
- Even if a number of cipher texts are available together with plain texts of them
- Sender and receiver must obtain secret key securely
- Once key is known, all communication using this key is readable

Attacking Encryption

Crypt analysis

- Relay on nature of algorithm plus some knowledge of general characteristics of plain text
- Attempt to deduce plain text or key
- Brute force
 - Try every possible key until plain text is achieved

Algorithms

Block cipher

- Process plain text in fixed block sizes producing block of cipher text of equal size
- Data encryption standard (DES)
- Triple DES (TDES)
- Advanced Encryption Standard

Data Encryption Standard

- US standard
- 64 bit plain text blocks
- 56 bit key
- Broken in 1998 by Electronic Frontier Foundation
 - Special purpose machine
 - Less than three days
 - DES now worthless

Triple DEA

- ANSI X9.17 (1985)
- Incorporated in DEA standard 1999
- Uses 3 keys and 3 executions of DEA algorithm
- Effective key length 112 or 168 bit
- Slow
- Block size (64 bit) too small

Advanced Encryption Standard

 National Institute of Standards and Technology (NIST) in 1997 issued call for Advanced Encryption Standard (AES)

- Security strength equal to or better than 3DES
- Improved efficiency
- Symmetric block cipher
- Block length 128 bits
- Key lengths 128, 192, and 256 bits
- Evaluation include security, computational efficiency, memory requirements, hardware and software suitability, and flexibility
- 2001, AES issued as federal information processing standard (FIPS 197)

AES Description

- Assume key length 128 bits
- Input is single 128-bit block
 - Depicted as square matrix of bytes
 - Block copied into State array
 - Modified at each stage
 - After final stage, State copied to output matrix
- 128-bit key depicted as square matrix of bytes
 - Expanded into array of key schedule words
 - Each four bytes
 - Total key schedule 44 words for 128-bit key
- Byte ordering by column
 - First four bytes of 128-bit plaintext input occupy first column of in matrix
 - First four bytes of expanded key occupy first column of w matrix

AES Comments (1)

- Key expanded into array of forty-four 32-bit words, w[i]
 - Four distinct words (128 bits) serve as round key for each round
- Four different stages
 - One permutation and three substitution
 - Substitute bytes uses S-box table to perform byte-by-byte substitution of block
 - Shift rows is permutation that performed row by row
 - Mix columns is substitution that alters each byte in column as function of all of bytes in column
 - Add round key is bitwise XOR of current block with portion of expanded key
- Simple structure
 - For both encryption and decryption, cipher begins with Add Round Key stage
 - Followed by nine rounds,
 - Each includes all four stages
 - Followed by tenth round of three stages

AES Comments (2)

- Only Add Round Key stage uses key
 - Begin and ends with Add Round Key stage
 - Any other stage at beginning or end, reversible without key
 - Adds no security
- Add Round Key stage by itself not formidable
 - Other three stages scramble bits
 - By themselves provide no security because no key
- Each stage easily reversible
- Decryption uses expanded key in reverse order
 - Not identical to encryption algorithm
- Easy to verify that decryption does recover plaintext
- Final round of encryption and decryption consists of only three stages
 - To make the cipher reversible

Location of Encryption Devices

Link Encryption

- Each communication link equipped at both ends
- All traffic secure
- High level of security
- Requires lots of encryption devices
- Message must be decrypted at each switch to read address (virtual circuit number)
- Security vulnerable at switches
 - Particularly on public switched network

End to End Encryption

- Encryption done at ends of system
- Data in encrypted form crosses network unaltered
- Destination shares key with source to decrypt
- Host can only encrypt user data
 - Otherwise switching nodes could not read header or route packet
- Traffic pattern not secure
- Use both link and end to end

Key Distribution

- Key selected by A and delivered to B
- Third party selects key and delivers to A and B
- Use old key to encrypt and transmit new key from A to B
- Use old key to transmit new key from third party to A and B

Automatic Key Distribution (diag)

Automatic Key Distribution

Session Key

- Used for duration of one logical connection
- Destroyed at end of session
- Used for user data
- Permanent key
 - Used for distribution of keys
- Key distribution center
 - Determines which systems may communicate
 - Provides one session key for that connection
- Security service module (SSM)
 - Performs end to end encryption
 - Obtains keys for host

Traffic Padding

- Produce cipher text continuously
- If no plain text to encode, send random data
- Make traffic analysis impossible

Message Authentication

Protection against active attacks

- Falsification of data
- Eavesdropping
- Message is authentic if it is genuine and comes from the alleged source
- Authentication allows receiver to verify that message is authentic
 - Message has not altered
 - Message is from authentic source
 - Message timeline

Authentication Using Encryption

- Assumes sender and receiver are only entities that know key
- Message includes:
 - error detection code
 - sequence number
 - time stamp

Authentication Without Encryption

- Authentication tag generated and appended to each message
- Message not encrypted
- Useful for:
 - Messages broadcast to multiple destinations
 - Have one destination responsible for authentication
 - One side heavily loaded
 - Encryption adds to workload
 - Can authenticate random messages
 - Programs authenticated without encryption can be executed without decoding

Message Authentication Code

- Generate authentication code based on shared key and message
- Common key shared between A and B
- If only sender and receiver know key and code matches:
 - Receiver assured message has not altered
 - Receiver assured message is from alleged sender
 - If message has sequence number, receiver assured of proper sequence

Message Authentication Using

One Way Hash Function

- Accepts variable size message and produces fixed size tag (message digest)
- Advantages of authentication without encryption
 - Encryption is slow
 - Encryption hardware expensive
 - Encryption hardware optimized to large data
 - Algorithms covered by patents
 - Algorithms subject to export controls (from USA)

Secure Hash Functions

• Hash function must have following properties:

- Can be applied to any size data block
- Produce fixed length output
- Easy to compute
- Not feasible to reverse
- Not feasible to find two message that give the same hash

SHA-1

- Secure Hash Algorithm 1
- Input message less than 2⁶⁴ bits
 - Processed in 512 bit blocks
- Output 160 bit digest

Message Digest Generation Using SHA-1

Public Key Encryption

- Based on mathematical algorithms
- Asymmetric
 - Use two separate keys
- Ingredients
 - Plain text
 - Encryption algorithm
 - Public and private key
 - Cipher text
 - Decryption algorithm

Public Key Encryption - Operation

- One key made public
 - Used for encryption
- Other kept private
 - Used for decryption
- Infeasible to determine decryption key given encryption key and algorithm
- Either key can be used for encryption, the other for decryption

Steps

- User generates pair of keys
- User places one key in public domain
- To send a message to user, encrypt using public key
- User decrypts using private key

Digital Signature

- Sender encrypts message with their private key
- Receiver can decrypt using sneders public key
- This authenticates sender, who is only person who has the matching key
- Does not give privacy of data
 - Decrypt key is public

Public Key Certificate Use

Figure 21.12 Public-Key Certificate Use

Secure Sockets Layer Transport Layer Security

- Security services
- Transport Layer Security defined in RFC 2246
- SSL general-purpose service
 - Set of protocols that rely on TCP
- Two implementation options
 - Part of underlying protocol suite
 - Transparent to applications
 - Embedded in specific packages
 - E.g. Netscape and Microsoft Explorer and most Web servers

Minor differences between SSLv3 and TLS

SSL Architecture

- SSL uses TCP to provide reliable end-to-end secure service
- SSL two layers of protocols
- Record Protocol provides basic security services to various higher-layer protocols
 - In particular, HTTP can operate on top of SSL
- Three higher-layer protocols
 - Handshake Protocol
 - Change Cipher Spec Protocol
 - Alert Protocol
 - Used in management of SSL exchanges (see later)

SSL Protocol Stack

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	HTTP
SSL Record Protocol			
ТСР			
IP			

Figure 21.13 SSL Protocol Stack

Connection and Session

- Transport that provides suitable type of service
- Peer-to-peer
- Transient
- Every connection associated with one session
- Session
 - Association between client and server
 - Created by Handshake Protocol
 - Define set of cryptographic security parameters
 - Used to avoid negotiation of new security parameters for each connection

Maybe multiple secure connections between parties May be multiple simultaneous sessions between parties

SSL Record Protocol Confidentiality

- Handshake Protocol defines shared secret key
- Used for symmetric encryption
- Message Integrity
 - Handshake Protocol defines shared secret key
 - Used to form message authentication code (MAC)
- Each upper-layer message fragmented
 - 2¹⁴ bytes (16384 bytes) or less
- Compression optionally applied
- Compute message authentication code

Compressed message plus MAC encrypted using symmetric encryption

Record Protocol Header

- Content Type (8 bits)
 - change_cipher_spec, alert, handshake, and application_data
 - No distinction between applications (e.g., HTTP)
 - Content of application data opaque to SSL
- Major Version (8 bits) SSL v3 is 3
- Minor Version (8 bits) SSLv3 value is o
- Compressed Length (16 bits)
 - Maximum 2¹⁴ + 2048

Record Protocol then transmits unit in TCP segment

Received data are decrypted, verified, decompressed, and reassembled and then delivered

Change Cipher Spec Protocol

- Uses Record Protocol
- Single message
 - Single byte value 1
- Cause pending state to be copied into current state
 - Updates cipher suite to be used on this connection

Alert Protocol

- Convey SSL-related alerts to peer entity
- Alert messages compressed and encrypted
- Two bytes
 - First byte warning(1) or fatal(2)
 - If fatal, SSL immediately terminates connection
 - Other connections on session may continue
 - No new connections on session
 - Second byte indicates specific alert
 - E.g. fatal alert is an incorrect MAC
 - E.g. nonfatal alert is close_notify message

Handshake Protocol

Authenticate

- Negotiate encryption and MAC algorithm and cryptographic keys
- Used before any application data sent

Handshake Protocol –

• Versio<u>n</u>

- Highestasersian Initiate Connection
- Random
 - Client-generated random structure
 - 32-bit timestamp and 28 bytes from secure random number generator
 - Used during key exchange to prevent replay attacks
- Session ID
 - Variable-length
 - Nonzero indicates client wishes to update existing connection or create new connection on session
 - Zero indicates client wishes to establish new connection on new session
- CipherSuite
 - List of cryptographic algorithms supported by client
 - Each element defines key exchange algorithm and CipherSpec
 - **Compression** Method

Handshake Protocol – Completes setting up Phase 4

- Client sends change_cipher_spec
- Copies pending CipherSpec into current CipherSpec
 - Not considered part of Handshake Protocol
 - Sent using Change Cipher Spec Protocol
- Client sends finished message under new algorithms, keys, and secrets
- Finished message verifies key exchange and authentication successful
- Server sends own change_cipher_spec message
 - Transfers pending to current CipherSpec
 - Sends its finished message
 - Handshake complete

IPv4 and IPv6 Security

IPSec

- Secure branch office connectivity over Internet
- Secure remote access over Internet
- Extranet and intranet connectivity
- Enhanced electronic commerce security

IPSec Scope

- Authentication header
- Encapsulated security payload
- Key exchange
- RFC 2401,2402,2406,2408

Security Association

- One way relationship between sender and receiver
- For two way, two associations are required
- Three SA identification parameters
 - Security parameter index
 - IP destination address
 - Security protocol identifier

SA Parameters

- Sequence number counter
- Sequence counter overflow
- Anti-reply windows
- AH information
- ESP information
- Lifetime of this association
- IPSec protocol mode
 - Tunnel, transport or wildcard
 - Path MTU

Authentication Header

Encapsulating Security Payload

• ESP

Confidentiality services

ESP Packet

