Information Security System EC-415-F

Lecture 1

Topics Covered

Digital Signature

Digital Signatures

- have looked at message authentication
- but does not address issues of lack of trust
- digital signatures provide the ability to:
- verify author, date \& time of signature
- authenticate message contents
- be verified by third parties to resolve disputes
- hence include authentication function with additional capabilities

Digital Signature Model

Attacks and Forgeries

- key-only attack
- known message attack
- generic chosen message attack
- directed chosen message attack
- adaptive chosen message attack
- break success levels
- total break
- selective forgery
- existential forgery

Digital Signature Requirements

must depend on the message signed
must use information unique to sender
to prevent both forgery and denial
must be relatively easy to produce
must be relatively easy to recognize \& verify
be computationally infeasible to forge

- with new message for existing digital signature
with fraudulent digital signature for given message
be practical save digital signature in storage

Direct Digital Signatures

- involve only sender \& receiver
- assumed receiver has sender's public-key
- digital signature made by sender signing entire message or hash with private-key
- can encrypt using receivers public-key
- important that sign first then encrypt message \& signature
- security depends on sender's private-key

ElGamal Digital Signatures

signature variant of ElGamal, related to D-H

- so uses exponentiation in a finite (Galois)
- with security based difficulty of computing discrete logarithms, as in D-H
use private key for encryption (signing)
uses public key for decryption (verification)
each user (eg. A) generates their key
- chooses a secret key (number): $1<\mathrm{x}_{\mathrm{A}}<\mathrm{q}-1$
- compute their public key: $y_{A}=a^{x_{A}} \bmod q$

ElGamal Digital Signature

Alice signs a message M to Bob by computing

- the hash $m=H(M), 0<=m<=(q-1)$
- chose random integer K with $1<=K<=(q-1)$ and $\operatorname{gcd}(K, q-1)=1$
- compute temporary key: $S_{1}=a^{k} \bmod q$
- compute K^{-1} the inverse of $K \bmod (q-1)$
- compute the value: $S_{2}=K^{-1}\left(m-x_{A} S_{1}\right) \bmod (q-1)$
- signature is: $\left(S_{1}, S_{2}\right)$
- any user B can verify the signature by computing
- $V_{1}=a^{m} \bmod q$
- $\mathrm{V}_{2}=\mathrm{y}_{\mathrm{A}}{ }^{\mathrm{S} 1} \mathrm{~S}_{1}{ }^{\mathrm{S} 2} \bmod \mathrm{q}$
signature is valid if $\mathrm{V}_{1}=\mathrm{V}_{2}$

ElGamal Signature Example

use field GF(19) q=19 and $\mathrm{a}=10$

Alice computes her key:

- A chooses $\mathrm{x}_{\mathrm{A}}=16$ \& computes $\mathrm{y}_{\mathrm{A}}=10^{16} \bmod 19=4$

Alice signs message with hash $\mathrm{m}=14$ as $(3,4)$:

- choosing random $\mathrm{K}=5$ which has $\operatorname{gcd}(18,5)=1$
- computing $\mathrm{S}_{1}=10^{5} \bmod 19=3$
- finding $K^{-1} \bmod (q-1)=5^{-1} \bmod 18=11$
- computing $\mathrm{S}_{2}=11(14-16.3) \bmod 18=4$
any user B can verify the signature by computing

$$
\begin{aligned}
& V_{1}=10^{14} \bmod 19=16 \\
& V_{2}=4^{3} \cdot 3^{4}=5184=16 \bmod 19 \\
& \text { since } 16=16 \text { signature is valid }
\end{aligned}
$$

Schnorr Digital Signatures

also uses exponentiation in a finite (Galois)

- security based on discrete logarithms, as in D-H
minimizes message dependent computation
- multiplying a $2 n$-bit integer with an n-bit integer
main work can be done in idle time
have using a prime modulus p
- $p-1$ has a prime factor q of appropriate size
- typically p 1024-bit and q160-bit numbers

Schnorr Key Setup

choose suitable primes p, q
choose a such that $\mathrm{a}^{\mathrm{q}}=1 \bmod \mathrm{p}$
(a, p, q) are global parameters for all
each user (eg. A) generates a key

- chooses a secret key (number): $0<\mathrm{s}_{\mathrm{A}}<\mathrm{q}$
- compute their public key: $\mathrm{v}_{\mathrm{A}}=a^{-\mathrm{sA}} \bmod \mathrm{q}$

Schnorr Signature

user signs message by

- choosing random r with $0<r<q$ and computing $x=a^{r} \bmod p$
- concatenate message with x and hash result to computing: $\mathrm{e}=\mathrm{H}$ (M || x)
- computing: y = (r + se) mod q
- signature is pair (e, y)
any other user can verify the signature as follows:
- computing: $x^{\prime}=a^{y} v^{e} \bmod p$
- verifying that: $e=H\left(M| | x^{\prime}\right)$

Digital Signature Standard (DSS)

- US Govt approved signature scheme
- designed by NIST \& NSA in early go's
- published as FIPS-186 in 1991
- revised in 1993, 1996 \& then 2000
- uses the SHA hash algorithm
- DSS is the standard, DSA is the algorithm
- FIPS 186-2 (2000) includes alternative RSA \& elliptic curve signature variants
- DSA is digital signature only unlike RSA
- is a public-key technique

DSS vs RSA Signatures

(a) RSA Approach

(b) DSS Approach

Digital Signature Algorithm (DSA)

creates a 320 bit signature
with 512-1024 bit security
smaller and faster than RSA
a digital signature scheme only
security depends on difficulty of computing discrete logarithms
variant of ElGamal \& Schnorr schemes

DSA Key Generation

have shared global public key values (p, q, g):

- choose 160-bit prime number q
- choose a large prime p with $2^{\mathrm{L}-1}<\mathrm{p}<2^{\mathrm{L}}$
- where $L=512$ to 1024 bits and is a multiple of 64
- such that q is a 160 bit prime divisor of $(p-1)$
- choose $g=h^{(p-1) / q}$
- where $1<h<p-1$ and $h(p-1) / q \bmod p>1$
- users choose private \& compute public key:
- choose random private key: $x<q$
compute public key: $y=g^{x} \bmod p$

DSA Signature Creation

$>$ to sign a message M the sender:
generates a random signature key k, $k<q$
nb. k must be random, be destroyed after use, and never be reused
B then computes signature pair:

$$
\begin{aligned}
& r=\left(g^{k} \bmod p\right) \bmod q \\
& s=\left[k^{-1}(H(M)+x r)\right] \bmod q
\end{aligned}
$$

sends signature (r, s) with message M

DSA Signature Verification

- having received M \& signature (r, s)
- to verify a signature, recipient computes:

$$
\begin{aligned}
& \mathrm{w}=\mathrm{s}^{-1} \bmod \mathrm{q} \\
& \mathrm{u} 1=[\mathrm{H}(\mathrm{M}) \mathrm{w}] \bmod \mathrm{q} \\
& \mathrm{u} 2=(\mathrm{rw}) \bmod \mathrm{q} \\
& \mathrm{v}=\left[\left(\mathrm{g}^{\mathrm{u} 1} \mathrm{y}^{\mathrm{u} 2}\right) \bmod \mathrm{p}\right] \bmod \mathrm{q}
\end{aligned}
$$

- if $\mathrm{v}=\mathrm{r}$ then signature is verified
- see Appendix A for details of proof why

DSS Overview

$$
\begin{aligned}
& \mathrm{s}=\mathrm{f}_{1}(\mathrm{H}(\mathrm{M}), \mathrm{k}, \mathrm{x}, \mathrm{r}, \mathrm{q})=\left(\mathrm{k}^{-1}(\mathrm{H}(\mathrm{M})+\mathrm{xr})\right) \bmod \mathrm{q} \\
& \mathrm{r}=\mathrm{f}_{2}(\mathrm{k}, \mathrm{p}, \mathrm{q}, \mathrm{~g})=\left(\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p}\right) \bmod \mathrm{q}
\end{aligned}
$$

$$
\begin{aligned}
w & =f_{3}\left(s^{\prime}, q\right)=\left(s^{\prime}\right)^{-1} \bmod q \\
v & =f_{4}\left(y, q, g, H\left(M^{\prime}\right), w, r^{\prime}\right) \\
& =\left(\left(g^{\left.\left.(H(M) w) \bmod q y^{\prime} w \bmod q\right) \bmod p\right) \bmod q}\right.\right.
\end{aligned}
$$

(a) Signing
(b) Verifying

Summary

- have discussed:
- digital signatures
- ElGamal \& Schnorr signature schemes
- digital signature algorithm and standard

