Information Security System EC-615-F

Lecture no 2, 3,4,5,6

Topics Covered

Finite field of increasing importance in cryptography

- AES, Elliptic Curve, CMAC
- concern operations on "numbers"
- where what constitutes a "number" and the type of operations varies considerably
- start with basic number theory concepts
- divisibility, Euclidian algorithm, modular arithmetic

Divisors

say a non-zero number b divides a if for some m have $a=m b$ ($\mathrm{a}, \mathrm{b}, \mathrm{m}$ all integers)
that is b divides into a with no remainder denote this bla
and say that b is a divisor of a
eg. all of $1,2,3,4,6,8,12,24$ divide 24

$$
\text { eg. } 13|182 ;-5| 30 ; 17|289 ;-3| 33 ; 17 \mid 0
$$

Properties of Divisibility

If $\mathrm{a} \mid 1$, then $\mathrm{a}= \pm 1$.
If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$, then $\mathrm{a}= \pm \mathrm{b}$.
Any b != o divides o.

- If $a \mid b$ and $b \mid c$, then $a \mid c$
- e.g. 11 | 66 and $66|198 \rightarrow 11| 198$
- If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n

$$
\begin{aligned}
& \text { e.g. } b=7 ; g=14 ; h=63 ; m=3 ; n=2 \\
& \text { hence } 7 \mid 14 \text { and } 7|63 \rightarrow 7|(3 \times 14+2 \times 63)
\end{aligned}
$$

Division Algorithm

Greatest Common Divisor (GCD)

a common problem in number theory
$\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ of a and b is the largest integer that divides both a and b

- E.g., $\operatorname{gcd}(60,24)=12$
- define $\operatorname{gcd}(0,0)=0, \operatorname{gcd}(a, 0)=|a|$ for $a!=0$
- often want no common factors (except 1) define such numbers as relatively prime
- E.g. $\operatorname{gcd}(8,15)=1$
- hence $8 \& 15$ are relatively prime

Euclidean Algorithm

- A simple procedure for finding $d=\operatorname{gcd}(a, b)$
- $\operatorname{gcd}(|a|,|b|)=\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$
- no harm to assume $a>=b>0$
- Euclid (a,b)

$$
\begin{aligned}
& \text { if }(b=0) \text { then return } a \text {; } \\
& \text { else return Euclid }(b, a \bmod b) \text {; }
\end{aligned}
$$

- E.g., $\operatorname{gcd}(60,24)=12 ; \operatorname{gcd}(8,15)=1$

$$
\begin{aligned}
& \quad \text { Example } G C D(1970,1066) \\
& 1970=1 \times 1066+904 \\
& 1066=1 \times 904+162
\end{aligned} \operatorname{gcd}(904,162)
$$

GCD(1160718174, 316258250)

Dividend	Divisor	Quotient Remainder	
$a=1160718174$	$b=316258250$	$q 1=3$	$r 1=211943424$
$b=316258250$	$r 1=211943424$	$q 2=1$	$r 2=104314826$
$r 1=211943424$	$r 2=104314826$	$q 3=2$	$r 3=3313772$
$r 2=104314826$	$r 3=3313772$	$q 4=31$	$r 4=1587894$
$r 3=3313772$	$r 4=1587894$	$q 5=2$	$r 5=137984$
$r 4=1587894$	$r 5=137984$	$q 6=11$	$r 6=70070$
$r 5=137984$	$r 6=70070$	$q 7=1$	$r 7=67914$
$r 6=70070$	$r 7=67914$	$q 8=1$	$r 8=2516$
$r 7=67914$	$r 8=2516$	$q 9=31$	$r 9=1078$
$r 8=2516$	$r 9=1078$	$q 10=2$	$r 10=0$

There are other GCD algorithms, but Euclidean Algorithm is very efficient!

Modular Arithmetic

 define modulo operator "a mod n " to be remainder when a is divided by n- where positive integer n is called the modulus
- $a=q n+r \quad 0<=r<n ; q=f l o o r(a / n)$
- $a=f l o o r(a / n) * n+(a \bmod n)$
- e.g, $11 \bmod 7=4 ; \quad-11 \bmod 7=3$
a and b are congruent modulo \mathbf{n} if: $a \bmod n=b$ $\bmod n$
when divided by $n, a \& b$ have same remainder

$$
\mathrm{a} \equiv \mathrm{~b}(\bmod \mathrm{n}), \quad \text { eg. } 100 \equiv 34 \bmod 11
$$

Modular Arithmetic Operations

$(\bmod n)$ operator maps all integers into the set

$$
\mathrm{Z}_{\mathrm{n}}=\{0,1, \ldots,(n-1)\}
$$

- can perform arithmetic operations within the confines of this set \rightarrow modular arithmetic
- Rules for addition, subtraction, and multiplication carry over into modular arithmetic

Properties of Modular Arithmetic Operations

- $[(a \bmod n)+(b \bmod n)] \bmod n=(a+b)$ $\bmod \mathrm{n}$
- $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b)$ $\bmod n$

3. $[(a \bmod n) x(b \bmod n)] \bmod n=(a x b)$ $\bmod n$
egg.
$[(11 \bmod 8)+(15 \bmod 8)] \bmod 8=10 \bmod 8=2(11+15) \bmod 8=26 \bmod 8=2$
$[(11 \bmod 8)-(15 \bmod 8)] \bmod 8=-4 \bmod 8=4(11-15) \bmod 8=-4 \bmod 8=4$
$[(11 \bmod 8) \times(15 \bmod 8)] \bmod 8=21 \bmod 8=5(11 \times 15) \bmod 8=165 \bmod 8=5$

Modulo 8 Addition in Z_{8}

	0123456							
			2	3	4	5		
		2	3	4	5	6		
		3	4	5	6	7	0	
		4	5	6	7	0		
		5	6	7	0	1	2	
		6	7	0	1	2	3	
		7		1	2	3		
		0		2	3	4		

The matrix is symmetric about the main diagonal

Additive inverse exists to each integer in modular addition:
$(\mathrm{x}+\mathrm{y}) \bmod 8=0$

Modulo 8 Multiplication in Z_{8}

+| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

The matrix is symmetric about the main diagonal

Multiplicative inverse exists to some integers in mod 8 multiplication:
$\left(x^{*} y\right) \bmod 8=1$

Residue Classes (mod n)

$(\bmod n)$ operator maps all integers into the set

$$
\mathrm{Z}_{\mathrm{n}}=\{0,1, \ldots,(n-1)\} \rightarrow \text { set of residues, or residue classes }
$$

Each integer in Z_{n} represents a residue class
$[r]=\{a: a$ is an integer, $a \equiv r(\bmod n)\}$
e.g., the residue classes $(\bmod 4)$ are:
$[0]=\{\ldots,-16,-12,-8,-4,0,4,8,12,16, \ldots\}$
$[1]=\{\ldots,-15,-11,-7,-3,1,5,9,13,17, \ldots\}$
$[2]=\{\ldots,-14,-10,-6,-2,2,6,10,14,18, \ldots\}$
$[3]=\{\ldots,-13,-9,-5,-1,3,7,11,15,19, \ldots\}$
Finding the smallest nonnegative integer to which k is congruent modulo n is called reducing k modulo n

Properties of Modular Arithmetic for Integers in Z_{n}

Property	Expression			
Commutative laws	$(w+x) \bmod n=(x+w) \bmod n$ $(w \times x) \bmod n=(x \times w) \bmod n$			
Associative laws	$[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$ $[(w \times x) \times y] \bmod n=[w \times(x \times y)] \bmod n$			
Distributive law	$[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n$	$	$	$(0+w) \bmod n=w \bmod n$
:---				
$(1 \times w) \bmod n=w \bmod n$,	For each $w \in Z_{n}$, there exists a z such that $w+z=0 \bmod n$		
:---				
Adentities				
Additive inverse $(-w)$				

Modular Arithmetic Special Properties

if $(a+b) \equiv(a+c)(\bmod n)$ then $b \equiv c(\bmod n)$

- e.g., $(5+23) \equiv(5+7)(\bmod 8) \rightarrow 23 \equiv 7(\bmod 8)$
- due to the existence of additive inverse
- add additive inverse -a to both sides to prove
- if $(a * b) \equiv(a * c)(\bmod n)$ then $b \equiv c(\bmod n)$ if a is relatively prime to n
- e.g., ($5 * 23$) $\equiv(5 * 7)(\bmod 8) \rightarrow 23 \equiv 7(\bmod 8)$
- if multiplicative inverse exists for a mod n
- normally, if an integer is relatively prime to n, then this integer has a multiplicative inverse in Z_{n}

Extended Euclidean Algorithm

- calculates not only GCD but $x \& y$ (with opposite signs): $a x+b y=d=\operatorname{gcd}(a, b)$
- useful for later crypto computations, e.g, RSA
- follow sequence of divisions for GCD but assume at each step i, can find $x \& y$:

$$
r=a x+b y
$$

- at end find GCD value and also x \& y

