Information Security System EC-615-F

Lecture no 2, 3,4,5,6

Topics Covered

Finite field of increasing importance in cryptography

- AES, Elliptic Curve, CMAC
- concern operations on "numbers"
 - where what constitutes a "number" and the type of operations varies considerably
- start with basic number theory concepts
 - divisibility, Euclidian algorithm, modular arithmetic

Divisors

- say a non-zero number b divides a if for some m have a=mb
 (a,b,m all integers)
- that is **b** divides into a with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1, 2, 3, 4, 6, 8, 12, 24 divide 24
- eg. 13 | 182; -5 | 30; 17 | 289; -3 | 33; 17 | 0

Properties of Divisibility If a|1, then $a = \pm 1$.

- If a b and b a, then $a = \pm b$.
- Any b != o divides o.
- If a | b and b | c, then a | c
 - e.g. 11 | 66 and 66 | 198 → 11 | 198
- If b|g and b|h, then b|(mg + nh)
 for arbitrary integers m and n
 e.g. b = 7; g = 14; h = 63; m = 3; n = 2
 hence 7|14 and 7|63 → 7|(3 × 14 + 2 × 63)

Division Algorithm

Greatest Common Divisor (GCD)

- a common problem in number theory
- gcd (a,b) of a and b is the largest integer that divides both a and b
 - E.g., gcd(60,24) = 12
- define gcd(o, o) = o, gcd(a,o) = |a| for a !=o
- often want no common factors (except 1) define such numbers as relatively prime
 - E.g. gcd(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclidean Algorithm

- A simple procedure for finding d = gcd (a, b)
- gcd(|a|, |b|) = gcd (a, b) = gcd (b, a)
- no harm to assume a >= b > o
- Euclid(a,b)
 if (b=0) then return a;
 else return Euclid(b, a mod b);

E.g., gcd(60,24) = 12; gcd(8,15) = 1

$1970 = 1 \times 1066 + 904 \operatorname{gcd}(1066, 904)$
$1970 = 1 \times 1066 + 904 \text{gcd}(1066, 904)$
$1066 = 1 \times 904 + 162 \text{ gcd}(904, 162)$
$904 = 5 \times 162 + 94$ gcd(162, 94)
$162 = 1 \times 94 + 68 gcd(94, 68)$
$94 = 1 \times 68 + 26$ gcd(68, 26)
$68 = 2 \times 26 + 16$ gcd(26, 16)
$26 = 1 \times 16 + 10$ gcd(16, 10)
$16 = 1 \times 10 + 6 gcd(10, 6)$
$10 = 1 \times 6 + 4 gcd(6, 4)$
$6 = 1 \times 4 + 2 gcd(4, 2)$
$4 = 2 \times 2 + 0$ gcd(2, 0)

GCD(1160718174, 316258250)

D <mark>iv</mark> idend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	q1 = 3	r1 = 211943424
b = 316258250	r1 = 211943424	$q^2 = 1$	r2 = 104314826
r1 = 211943424	r2 = 104314826	q3 = 2	r3 = 3313772
$r^2 = 104314826$	r3 = 3313772	q4 = 31	r4 = 1587894
r3 = 3313772	r4 = 1587894	q5 = 2	r5 = 137984
r4 = 1587894	r5 = 137984	q6 = 11	r6 = 70070
r5 = 137984	r6 = 70070	q7 = 1	r7 = 67914
r6 = 70070	r7 = 67914	q8 = 1	r8 = 2516
r7 = 67914	r8 = 2516	q9 = 31	r9 = 1078
r8 = 2516	r9 = 1078	q10 = 2	r10 = 0

There are other GCD algorithms, but Euclidean Algorithm is very efficient!

Modular Arithmetic define modulo operator "a mod n" to be remainder when a is divided by n

- where positive integer n is called the modulus
- a = qn + r $0 \le r \le n; q = floor(a/n)$
- a = floor(a/n) * n + (a mod n)
- e.g, 11 mod 7 = 4; -11 mod 7 = 3
- a and b are congruent modulo n if: a mod n = b
 mod n
 - when divided by *n*, a & b have same remainder
 - a ≡ b (mod n), eg. 100 ≡ 34 mod 11

Modular Arithmetic Operations

(mod n) operator maps all integers into the set

 $Z_n = \{0, 1, ..., (n-1)\}$

can perform arithmetic operations within the confines of this set
 → modular arithmetic

 Rules for addition, subtraction, and multiplication carry over into modular arithmetic

Properties of Modular Arithmetic Operations

- $[(a \mod n) + (b \mod n)] \mod n = (a + b)$ mod n
- 2 . [(a mod n) (b mod n)] mod n = (a b)
 mod n
- 3.[(a mod n) x (b mod n)] mod n = (a x b) mod n

e.g.

 $[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2 (11 + 15) \mod 8 = 26 \mod 8 = 2$ $[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4 (11 - 15) \mod 8 = -4 \mod 8 = 4$ $[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5 (11 \times 15) \mod 8 = 165 \mod 8 = 5$

Modulo 8 Addition in Z₈

+ 0 1 2 3 4 5 6 7() ()

The matrix is symmetric about the main diagonal

Additive inverse exists to each integer in modular addition: (x+y) mod 8 = 0

Modulo 8 Multiplication in Z₈

The matrix is symmetric about the main diagonal

Multiplicative inverse exists to some integers in mod 8 multiplication: (x * y) mod 8 = 1

Residue Classes (mod n)

(mod n) operator maps all integers into the set

 $Z_n = \{0, 1, ..., (n-1)\} \rightarrow set of residues, or residue classes$ Each integer in Z_n represents a residue class $[r] = \{a: a \text{ is an integer, } a \equiv r \pmod{n} \}$ e.g., the residue classes (mod 4) are: $[0] = \{..., -16, -12, -8, -4, 0, 4, 8, 12, 16, ...\}$ $[1] = \{..., -15, -11, -7, -3, 1, 5, 9, 13, 17, ...\}$ $[2] = \{..., -14, -10, -6, -2, 2, 6, 10, 14, 18, ...\}$ $[3] = \{..., -13, -9, -5, -1, 3, 7, 11, 15, 19, ...\}$

Finding the smallest nonnegative integer to which k is congruent modulo n is called **reducing k modulo n**

Properties of Modular Arithmetic for Integers in Z_n

Property	Expression
Commutative laws	$(w + x) \mod n = (x + w) \mod n$
	$(w \times x) \mod n = (x \times w) \mod n$
Associative laws	$[(w+x)+y] \mod n = [w+(x+y)] \mod n$
	$[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \mod n = w \mod n$
	$(1 \times w) \mod n = w \mod n$
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$

Modular Arithmetic Special Properties

if $(a + b) \equiv (a + c) \pmod{n}$ then $b \equiv c \pmod{n}$

- e.g., $(5 + 23) \equiv (5 + 7) \pmod{8} \rightarrow 23 \equiv 7 \pmod{8}$
- due to the existence of additive inverse
- add additive inverse —a to both sides to prove
- if (a * b) ≡ (a * c) (mod n) then b ≡ c (mod n) if a is relatively prime to n
 - e.g., $(5 * 23) \equiv (5 * 7) \pmod{8} \rightarrow 23 \equiv 7 \pmod{8}$
 - if multiplicative inverse exists for a mod n
 - normally, if an integer is relatively prime to n, then this integer has a multiplicative inverse in Z_n

Extended Euclidean Algorithm

- calculates not only GCD but x & y (with opposite signs): ax + by = d = gcd(a, b)
- useful for later crypto computations, e.g, RSA
- follow sequence of divisions for GCD but assume at each step i, can find x & y:

r = ax + by

at end find GCD value and also x & y