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Topics covered 

Cryptography II 

– Number theory (groups and fields) 

– Block cyphers 

–Algorithms in the Real World 



Cryptography Outline 

• Introduction: terminology and background  

• Primitives: one-way hash functions, trapdoors, … 

• Protocols: digital signatures, key exchange, .. 

•   Number Theory:  groups, fields, … 

• Private-Key Algorithms: Rijndael, DES, RC4 

• Cryptanalysis: Differential, Linear 

• Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser 

• Case Studies: Kerberos, Digital Cash 

 

 



Number Theory Outline • Groups 

• Definitions, Examples, Properties 

• Multiplicative group modulo n 

• The Euler-phi function 

• Fields 

• Definition, Examples 

• Polynomials 

• Galois Fields 

• Why does number theory play such an important role? 

It is the mathematics of finite sets of values. 



Groups 
• A Group is a set G with binary operator * such that 

1. Closure. For all a,b  G, a * b  G 

2. Associativity. For all a,b,c  G, a*(b*c) = (a*b)*c 

3. Identity. There exists I  G, such that for all  
a  G, a*I=I*a=a 

4. Inverse. For every a  G, there exist a unique element b  G, such 
that a*b=b*a=I 

• An Abelian or Commutative Group is a Group with the 
additional condition 

5. Commutativity. For all a,b  G, a*b=b*a 



Examples of groups 

• Integers, Reals or Rationals with Addition 

• The nonzero Reals or Rationals with Multiplication 

• Non-singular n x n real matrices with Matrix Multiplication  

• Permutations over n elements with composition 
[01, 12, 20] o [01, 10, 22] = [00, 12, 21] 

 

• We will only be concerned with finite groups, I.e., ones 
with a finite number of elements. 



Groups based on modular arithmetic 

• The multiplicative group modulo n 

Zn
*  {m : 1  m < n, gcd(n,m) = 1} 

*   multiplication modulo p 

Denoted as (Zn
*, *n) 

• Required properties: 

• Closure.  Yes. 

• Associativity.  Yes. 

• Identity.  1. 

• Inverse.  Yes. 

• Example: Z15
* = {1,2,4,7,8,11,13,14} 

•     1-1 = 1, 2-1 = 8, 4-1 = 4, 7-1 = 13, 11-1 = 11, 14-1 = 14 

 



The Euler Phi Function 

• If n is a product of two primes p and q, then 
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This will be very important in RSA! 



Generators • Example of Z10
*: {1, 3, 7, 9} 

x x2 x3 x4 

1 1 1 1 

3 9 7 1 

7 9 3 1 

9 1 9 1 

For all n the group is cyclic. 

Generators 



Operations we will need 

• Multiplication 

• Can be done in O(log2 n) bit operations 

 

• Finding the inverse:  

• Euclids algorithm O(log n) steps 

 

• Power:   

• The power method O(log n) steps 



Discrete Logarithms 

• If g is a generator of Zn
*, then for all y there is a unique x 

such that 

• y = gx mod n 

• This is called the discrete logarithm of y and we use the 
notation 

• x = logg(y) 

• In general finding the discrete logarithm is conjectured to 
be hard…as hard as factoring. 



Euclid’s Algorithm 

• Euclid’s Algorithm: 

•     gcd(a,b) = gcd(b,a mod b) 

•     gcd(a,0) = a 

• “Extended” Euclid’s algorithm: 

• Find x and y such that ax + by = z = gcd(a,b) 

• Can be calculated as a side-effect of Euclid’s algorithm. 

• Note that x and y can be zero or negative. 

• This allows us to find a-1 mod n, for a  Zn
* 

• In particular return x in ax + ny = 1. 



Fields 

• A Field is a set of elements F with binary operators * and + such that 

1. (F, +) is an abelian group 

2. (F \ I+, *) is an abelian group 

3. Distribution.  a*(b+c) = a*b + a*c 

4. Cancellation. a*I+ = I+  

• The order of a field is the number of elements. 

• A field of finite order is a finite field. 

 

• The reals and rationals with + and * are fields. 

• Zp (p prime) with + and * mod p, is a finite field. 

 



Division and Modulus 

• Long division on polynomials (5[x]): 
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Polynomials modulo Polynomials 

• How about making a field of polynomials modulo another 
polynomial?   This is analogous to p (i.e., integers 
modulo another integer). 

• e.g. 5[x] mod (x2+2x+1) 

• Does this work? 

• Does (x + 1) have an inverse? 

Definition: An irreducible polynomial is one that is 
not a product of two other polynomials both of 
degree greater than 0. 

e.g. (x^2 + 2) for 5[x]  

Analogous to a prime number. 



Galois Fields 

• The polynomials  

•     p[x] mod p(x)  

• where  
p(x)  p[x],  
p(x) is irreducible,  
and deg(p(x)) = n 

• form a finite field.   Such a field has p^n elements. 

• These fields are called Galois Fields or GF(pn). 

• The special case n = 1 reduces to the fields p 

• The multiplicative group of GF(pn)/{0} is cyclic (this will be important later). 



GF(2n) • Hugely practical!  

• The coefficients are bits {0,1}. 

• For example, the elements of GF(28) can be represented 
as a byte, one bit for each term, and GF(264) as a 64-bit 
word. 

• e.g., x6 + x4 + x + 1 = 01010011 

• How do we do addition? 

Addition over 2 corresponds to xor. 

• Just take the xor of the bit-strings (bytes or 
words in practice).   This is dirt cheap 



Multiplication over GF(2n) 

• If n is small enough can use a table of all combinations. 

• The size will be 2n x 2n (e.g. 64K for GF(28)). 

• Otherwise, use standard shift and add (xor) 

 

• Note: dividing through by the irreducible polynomial on an overflow 
by 1 term is simply a test and an xor. 

• e.g.      0111 / 1001 = 0111  

•            1011 / 1001 = 1011 xor 1001 = 0010  

•            ^ just look at this bit for GF(23) 

 



Multiplication over GF(2n) 

•   typedef unsigned char uc; 
 
uc mult(uc a, uc b) { 
  int p = a; 
  uc r = 0; 
  while(b) { 
    if (b & 1) r = r ^ p; 
    b = b >> 1; 
    p = p << 1; 
    if (p & 0x10) p = p ^ 0x11B; 
  } 
  return r; 
} 

 



Finding inverses over GF(2n)  

• Again, if n is small just store in a table. 

• Table size is just 2n. 

• For larger n, use Euclid’s algorithm.   

• This is again easy to do with shift and xors. 



Polynomials with coefficients in GF(pn) 
• Recall that GF(pn) were defined in terms of coefficients that were 

themselves fields (i.e., Zn). 

• We can apply this recursively and define GF(pn)[x] 

• e.g. for coefficients GF(23) 

•    f(x) = 001x2 + 101x + 010 

• Where 101 is shorthand for x2+1.  

• We can make a finite field by using an irreducible polynomial M(x) 
selected from GF(pn)[x]. 

• For an order m polynomial and by abuse of notation we can write: 
GF(GF(pn)m), which has pnm elements. 

• Used in Reed-Solomon codes and Rijndael. 

 



Cryptography Outline 

• Introduction: terminology and background  

• Primitives: one-way hash functions, trapdoors, … 

• Protocols: digital signatures, key exchange, .. 

• Number Theory:  groups, fields, … 

•   Private-Key Algorithms: Rijndael, DES, RC4 

• Cryptanalysis: Differential, Linear 

• Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser 

• Case Studies: Kerberos, Digital Cash 

 

 



Private Key Algorithms 

Encryption 

Decryption 

Key1 

Key1 

Cyphertext 

Ek(M) = C 

Dk(C) = M 

Original Plaintext 

Plaintext 

What granularity of the message does Ek encrypt 



Private Key: Block Ciphers • Encrypt one block at a time (e.g. 64 bits) 

•       ci = f(k,mi)     mi = f’(k,ci) 

• Keys and blocks are often about the same size. 

• Equal message blocks will encrypt to equal codeblocks 

• Why is this a problem? 

• Various ways to avoid this: 

• E.g. ci = f(k,ci-1  mi)    
“Cipher block chaining” (CBC) 

• Why could this still be a problem? 

Solution: attach random block to the front of the 
message 



Security of block ciphers 

• Ideal: 

• k-bit -> k-bit   key-dependent subsitution  
(i.e. “random permutation”) 

• If keys and blocks are k-bits, can be implemented with 22k entry 
table. 



Product Ciphers 

• Multiple rounds each with 

• Substitution on smaller blocks 
Decorrelate input and output: “confusion” 

• Permutation across the smaller blocks 
Mix the bits: “diffusion” 

• Substitution-Permutation Product Cipher 

• Avalanch Effect: 1 bit of input should affect all output 
bits, ideally evenly, and for all settings of other in bits 

 

 



Iterated Block Ciphers 

• Each round is the same 
and typically involves 
substitutions and 
permutations 

• Decryption works with 
the same number of 
rounds either by running 
them backwards, or 
using a Feistel network. 

Round 1 

Round 1 

Round n 
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Blocks and Keys 

• The blocks and keys are organized as matrices of bytes.   
For the 128-bit case, it is a 4x4 matrix. 
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Data block 

b0, b1, …, b15 is the order of the bytes in the stream. 


