Information Security System EC-415-F

Lecture 1

Topics covered

Cryptography II

- Number theory (groups and fields)
- Block cyphers
-Algorithms in the Real World

Cryptography Outline

- Introduction: terminology and background
- Primitives: one-way hash functions, trapdoors, ...
- Protocols: digital signatures, key exchange, ..
- NumberTheory: groups, fields, ...
- Private-Key Algorithms: Rijndael, DES, RC4
- Cryptanalysis: Differential, Linear
- Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser
- Case Studies: Kerberos, Digital Cash

Groups

Number Theory Outline

- Definitions, Examples, Properties
- Multiplicative group modulo n
- The Euler-phifunction
- Fields
- Definition, Examples
- Polynomials
- Galois Fields
- Why does number theory play such an important role?

It is the mathematics of finite sets of values.

Groups

A Group is a set G with binary operator * such that

1. Closure. For all $a, b \not \subset G, a * b \not Q G$
2. Associativity. For all $a, b, c \not \subset G, a *(b * c)=(a * b) * c$
3. Identity. There exists $/ \mathbb{Q} G$, such that for all a QQ,$~ a *=1=1 * a=a$
4. Inverse. For every $a \mathbb{Q} G$, there exist a unique element $b \mathbb{Q} G$, such that $a * b=b * a=1$

- An Abelian or Commutative Group is a Group with the additional condition

5. Commutativity. For all $a, b \not \subset G, a * b=b * a$

Examples of groups

- Integers, Reals or Rationals with Addition
- The nonzero Reals or Rationals with Multiplication
- Non-singular nxn real matrices with Matrix Multiplication
- Permutations over n elements with composition

- We will only be concerned with finite groups, I.e., ones with a finite number of elements.

Groups based on modular arithmetic

- The multiplicative group modulo n
$Z_{n}{ }^{*}(2)\{m: 10 m<n, \operatorname{gcd}(n, m)=1\}$
* (2) multiplication modulo p

Denoted as $\left(Z_{n}{ }^{*},{ }^{*}\right)$

- Required properties:
- Closure. Yes.
- Associativity. Yes.
- Identity. 1.
- Inverse. Yes.

Example: $Z_{15}{ }^{*}=\{1,2,4,7,8,11,13,14\}$

$$
1^{-1}=1,2^{-1}=8,4^{-1}=4,7^{-1}=13,11^{-1}=11,14^{-1}=14
$$

The Euler Phi Function $\phi(n)=\left|Z_{n}^{*}\right|=n \prod_{p \mid n}(1-1 / p)$

- If n is a product of two primes p and q , then

$$
\phi(n)=p q(1-1 / p)(1-1 / q)=(p-1)(q-1)
$$

Note that by Fermat's Little Theorem:

$$
a^{\phi(n)}=1(\bmod n) \text { for } a \in \mathbb{Z}_{n}^{*}
$$

Or for $n=p q$

$$
a^{(p-1)(q-1)}=1(\bmod p q) \quad \text { for } \quad a \in \mathrm{Z}_{p q}^{*}
$$

This will be very important in RSA!

Example of $Z_{10}{ }^{*}$: $\{1,3,7,7,9\}$ nerators

Generators $<$| x | x^{2} | x^{3} | x^{4} |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 |
| $\underline{3}$ | 9 | 7 | 1 |
| $\underline{7}$ | 9 | 3 | 1 |
| 9 | 1 | 9 | 1 |

For all n the group is cyclic.

Operations we will need

- Multiplication
- Can be done in $\mathrm{O}\left(\log ^{2} n\right)$ bit operations
- Finding the inverse:
- Euclids algorithm O(log n) steps
- Power:
- The power method $O(\log n)$ steps

Discrete Logarithms

- If g is a generator of $Z_{n}{ }^{*}$, then for all y there is a unique x such that
- $y=g^{x} \bmod n$
- This is called the discrete logarithm of y and we use the notation
- $x=\log _{g}(y)$
- In general finding the discrete logarithm is conjectured to be hard...as hard as factoring.

Euclid's Algorithm

- Euclid's Algorithm:
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
$\operatorname{gcd}(\mathrm{a}, \mathrm{o})=\mathrm{a}$
- "Extended" Euclid's algorithm:
- Find \mathbf{x} and \mathbf{y} such that $\mathbf{a x}+\mathbf{b y}=\mathbf{z}=\operatorname{gcd}(\mathbf{a}, \mathrm{b})$
- Can be calculated as a side-effect of Euclid's algorithm.
- Note that \mathbf{x} and \mathbf{y} can be zero or negative.
- This allows us to find $\mathrm{a}^{-1} \bmod \mathrm{n}$, for a $\mathbb{Q} Z_{n}{ }^{*}$
- In particular return \underline{x} in $\underline{a x+n y=1}$.

Fields

- A Field is a set of elements F with binary operators * and + such that

1. $(F,+)$ is an abelian group
2. $\left(F \backslash I_{+1} *\right)$ is an abelian group
3. Distribution. $a *(b+c)=a * b+a * c$
4. Cancellation. $a * I_{+}=I_{+}$

- The order of a field is the number of elements.
- A field of finite order is a finite field.
- The reals and rationals with + and * are fields.
- $\quad Z_{p}(p$ prime $)$ with $+a n d * \bmod p$, is a finite field.

Division and Modulus

$$
x ^ { 2 } + 1 \longdiv { x ^ { 3 } + 4 x ^ { 2 } + 0 x + 3 }
$$

$$
\frac{x^{3}+0 x^{2}+1 x+0}{4 x^{2}+4 x+3}
$$

$$
\frac{4 x^{2}+0 x+4}{4 x+4}
$$

$$
\left(x^{3}+4 x^{2}+3\right) \bmod \left(x^{2}+1\right)=(4 x+4)
$$

$$
\left(x^{2}+1\right)(x+4)+(4 x+4)=\left(x^{3}+4 x^{2}+3\right)
$$

Polynomials modulo Polynomials

How about making a field of polynomials modulo another polynomial? This is analogous to A_{p} (i.e., integers modulo another integer).

- e.g. $A_{5}[x] \bmod \left(x^{2}+2 x+1\right)$
- Does this work?
- Does $(x+1)$ have an inverse?

Definition: An irreducible polynomial is one that is not a product of two other polynomials both of degree greater than 0.

$$
\text { e.g. }\left(x^{\wedge} 2+2\right) \text { for } A_{5}[x]
$$

Analogous to a prime number.

Galois Fields

- The polynomials
- $A_{p}[x] \bmod p(x)$
- where $\mathrm{p}(\mathrm{x}) \mathbb{Q} \mathbb{A}_{\mathrm{p}}[\mathrm{x}]$, $p(x)$ is irreducible, and $\operatorname{deg}(p(x))=n$
- form a finite field. Such a field has $p^{\wedge} n$ elements.
- These fields are called Galois Fields or GF(p^{n}).
- The special case $n=1$ reduces to the fields A_{p}
- The multiplicative group of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right) /\{0\}$ is cyclic (this will be important later).

Hugely practical!

$G F\left(2^{n}\right)$

The coefficients are bits \{0,1\}.

- For example, the elements of $\mathrm{GF}\left(2^{8}\right)$ can be represented as a byte, one bit for each term, and $\mathrm{GF}\left(2^{64}\right)$ as a 64 -bit word.
- e.g., $x^{6}+x^{4}+x+1=01010011$
- How do we do addition?

Addition over A_{2} corresponds to xor.

- Just take the xor of the bit-strings (bytes or words in practice). This is dirt cheap

Multiplication over GF(2n)

- If n is small enough can use a table of all combinations.
- The size will be $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ (e.g. 64 K for $\mathrm{GF}\left(2^{8}\right)$).
- Otherwise, use standard shift and add (xor)
- Note: dividing through by the irreducible polynomial on an overflow by 1 term is simply a test and an xor.
- e.g. 0111 / $1001=0111$

1011/ $1001=1011$ xor 1001 $=0010$
^ just look at this bit for GF(2^{3})

Multiplication over GF(2^{n})

typedef unsigned char uc;

```
uc mult(uc a, uc b) {
    int p = a;
    uc r = 0;
    while(b)
        if (b & 1) r = r ^ p;
        b = b >> 1;
        p = p << 1;
        if (p & 0x10) p = p ^ 0x11B;
    }
    return r;
}
```


Finding inverses over GF(2^{n})

- Again, if n is small just store in a table.
- Table size is just 2^{n}.
- For larger n, use Euclid's algorithm.
- This is again easy to do with shift and xors.

Polynomials with coefficients in GF(pn)

Recall that $\mathrm{GF}\left(\mathrm{p}^{n}\right)$ were defined in terms of coefficients that were themselves fields (i.e., Z_{n}).

- We can apply this recursively and define $G F\left(p^{n}\right)[x]$
- e.g. for coefficients GF(23)
- $f(x)=001 x^{2}+101 x+010$
- Where 101 is shorthand for $x^{2}+1$.
- We can make a finite field by using an irreducible polynomial $M(x)$ selected from GF(p $\left.{ }^{n}\right)[x]$.
- For an order m polynomial and by abuse of notation we can write: GF(GF($\left.p^{n}\right)^{m}$, which has $p^{n m}$ elements.
- Used in Reed-Solomon codes and Rijndael.

Cryptography Outline

- Introduction: terminology and background
- Primitives: one-way hash functions, trapdoors, ...
- Protocols: digital signatures, key exchange, ..
- Number Theory: groups, fields, ...
- Private-Key Algorithms: Rijndael, DES, RC4
- Cryptanalysis: Differential, Linear
- Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser
- Case Studies: Kerberos, Digital Cash

What granularity of the message does E_{k} encrypt

Priyate Key: Block Ciphers

$$
c_{i}=f\left(k, m_{i}\right) \quad m_{i}=f^{\prime}\left(k, c_{i}\right)
$$

- Keys and blocks are often about the same size.
- Equal message blocks will encrypt to equal codeblocks
- Why is this a problem?
- Various ways to avoid this:
- E.g. $c_{i}=f\left(k_{1} c_{i-1}\right.$ 公 $\left.m_{i}\right)$
"Cipher block chaining" (CBC)
- Why could this still be a problem?

Solution: attach random block to the front of the message

Security of block ciphers

- Ideal:
- k-bit -> k-bit key-dependent subsitution (i.e. "random permutation")
- If keys and blocks are k-bits, can be implemented with $2^{2 k}$ entry table.

Product Ciphers

- Multiple rounds each with
- Substitution on smaller blocks Decorrelate input and output: "confusion"
- Permutation across the smaller blocks Mix the bits: "diffusion"
- Substitution-Permutation Product Cipher
- Avalanch Effect: 1 bit of input should affect all output bits, ideally evenly, and for all settings of other in bits

Iterated Block Ciphers

- Each round is the same and typically involves substitutions and permutations
- Decryption works with the same number of rounds either by running them backwards, or using a Feistel network.

Blocks and Keys

$\left(\begin{array}{llll}b_{0} & b_{4} & b_{8} & b_{12} \\ b_{1} & b_{5} & b_{9} & b_{13} \\ b_{2} & b_{6} & b_{10} & b_{14} \\ b_{3} & b_{7} & b_{11} & b_{15}\end{array}\right)\left(\begin{array}{llll}k_{0} & k_{4} & k_{8} & k_{12} \\ k_{1} & k_{5} & k_{9} & k_{13} \\ k_{2} & k_{6} & k_{10} & k_{14} \\ k_{3} & k_{7} & k_{11} & k_{15}\end{array}\right)$

- The blocks and keys are organized as matrices of bytes.

For the 128 -bit case, it is a 4×4 matrix.

Data block

$b_{0}, b_{1}, \ldots, b_{15}$ is the order of the bytes in the stream.

