
Information Security System

EC-415-F

6/30/2015

Lecture 1

Topics covered

Cryptography II

– Number theory (groups and fields)

– Block cyphers

–Algorithms in the Real World

Cryptography Outline

• Introduction: terminology and background

• Primitives: one-way hash functions, trapdoors, …

• Protocols: digital signatures, key exchange, ..

• Number Theory: groups, fields, …

• Private-Key Algorithms: Rijndael, DES, RC4

• Cryptanalysis: Differential, Linear

• Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser

• Case Studies: Kerberos, Digital Cash

Number Theory Outline • Groups

• Definitions, Examples, Properties

• Multiplicative group modulo n

• The Euler-phi function

• Fields

• Definition, Examples

• Polynomials

• Galois Fields

• Why does number theory play such an important role?

It is the mathematics of finite sets of values.

Groups
• A Group is a set G with binary operator * such that

1. Closure. For all a,b G, a * b G

2. Associativity. For all a,b,c G, a*(b*c) = (a*b)*c

3. Identity. There exists I G, such that for all
a G, a*I=I*a=a

4. Inverse. For every a G, there exist a unique element b G, such
that a*b=b*a=I

• An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. For all a,b G, a*b=b*a

Examples of groups

• Integers, Reals or Rationals with Addition

• The nonzero Reals or Rationals with Multiplication

• Non-singular n x n real matrices with Matrix Multiplication

• Permutations over n elements with composition
[01, 12, 20] o [01, 10, 22] = [00, 12, 21]

• We will only be concerned with finite groups, I.e., ones
with a finite number of elements.

Groups based on modular arithmetic

• The multiplicative group modulo n

Zn
* {m : 1 m < n, gcd(n,m) = 1}

* multiplication modulo p

Denoted as (Zn
*, *n)

• Required properties:

• Closure. Yes.

• Associativity. Yes.

• Identity. 1.

• Inverse. Yes.

• Example: Z15
* = {1,2,4,7,8,11,13,14}

• 1-1 = 1, 2-1 = 8, 4-1 = 4, 7-1 = 13, 11-1 = 11, 14-1 = 14

The Euler Phi Function

• If n is a product of two primes p and q, then

)/11()(
|

* pnn
np

n

)1)(1()/11)(/11()(qpqppqn

Note that by Fermat’s Little Theorem:
*)(for)(mod 1 n

n ana

Or for n = pq
*)1)(1(for)(mod 1 pq

qp apqa

This will be very important in RSA!

Generators • Example of Z10
*: {1, 3, 7, 9}

x x2 x3 x4

1 1 1 1

3 9 7 1

7 9 3 1

9 1 9 1

For all n the group is cyclic.

Generators

Operations we will need

• Multiplication

• Can be done in O(log2 n) bit operations

• Finding the inverse:

• Euclids algorithm O(log n) steps

• Power:

• The power method O(log n) steps

Discrete Logarithms

• If g is a generator of Zn
*, then for all y there is a unique x

such that

• y = gx mod n

• This is called the discrete logarithm of y and we use the
notation

• x = logg(y)

• In general finding the discrete logarithm is conjectured to
be hard…as hard as factoring.

Euclid’s Algorithm

• Euclid’s Algorithm:

• gcd(a,b) = gcd(b,a mod b)

• gcd(a,0) = a

• “Extended” Euclid’s algorithm:

• Find x and y such that ax + by = z = gcd(a,b)

• Can be calculated as a side-effect of Euclid’s algorithm.

• Note that x and y can be zero or negative.

• This allows us to find a-1 mod n, for a Zn
*

• In particular return x in ax + ny = 1.

Fields

• A Field is a set of elements F with binary operators * and + such that

1. (F, +) is an abelian group

2. (F \ I+, *) is an abelian group

3. Distribution. a*(b+c) = a*b + a*c

4. Cancellation. a*I+ = I+

• The order of a field is the number of elements.

• A field of finite order is a finite field.

• The reals and rationals with + and * are fields.

• Zp (p prime) with + and * mod p, is a finite field.

Division and Modulus

• Long division on polynomials (5[x]):

44

404

344

010

3041

41

2

2

23

232

x

xx

xx

xxx

xxxx

x

)4()1/()34(223 xxxx

)44()1mod()34(223 xxxx

)34()44()4)(1(232 xxxxx

Polynomials modulo Polynomials

• How about making a field of polynomials modulo another
polynomial? This is analogous to p (i.e., integers
modulo another integer).

• e.g. 5[x] mod (x2+2x+1)

• Does this work?

• Does (x + 1) have an inverse?

Definition: An irreducible polynomial is one that is
not a product of two other polynomials both of
degree greater than 0.

e.g. (x^2 + 2) for 5[x]

Analogous to a prime number.

Galois Fields

• The polynomials

• p[x] mod p(x)

• where
p(x) p[x],
p(x) is irreducible,
and deg(p(x)) = n

• form a finite field. Such a field has p^n elements.

• These fields are called Galois Fields or GF(pn).

• The special case n = 1 reduces to the fields p

• The multiplicative group of GF(pn)/{0} is cyclic (this will be important later).

GF(2n) • Hugely practical!

• The coefficients are bits {0,1}.

• For example, the elements of GF(28) can be represented
as a byte, one bit for each term, and GF(264) as a 64-bit
word.

• e.g., x6 + x4 + x + 1 = 01010011

• How do we do addition?

Addition over 2 corresponds to xor.

• Just take the xor of the bit-strings (bytes or
words in practice). This is dirt cheap

Multiplication over GF(2n)

• If n is small enough can use a table of all combinations.

• The size will be 2n x 2n (e.g. 64K for GF(28)).

• Otherwise, use standard shift and add (xor)

• Note: dividing through by the irreducible polynomial on an overflow
by 1 term is simply a test and an xor.

• e.g. 0111 / 1001 = 0111

• 1011 / 1001 = 1011 xor 1001 = 0010

• ^ just look at this bit for GF(23)

Multiplication over GF(2n)

• typedef unsigned char uc;

uc mult(uc a, uc b) {
 int p = a;
 uc r = 0;
 while(b) {
 if (b & 1) r = r ^ p;
 b = b >> 1;
 p = p << 1;
 if (p & 0x10) p = p ^ 0x11B;
 }
 return r;
}

Finding inverses over GF(2n)

• Again, if n is small just store in a table.

• Table size is just 2n.

• For larger n, use Euclid’s algorithm.

• This is again easy to do with shift and xors.

Polynomials with coefficients in GF(pn)
• Recall that GF(pn) were defined in terms of coefficients that were

themselves fields (i.e., Zn).

• We can apply this recursively and define GF(pn)[x]

• e.g. for coefficients GF(23)

• f(x) = 001x2 + 101x + 010

• Where 101 is shorthand for x2+1.

• We can make a finite field by using an irreducible polynomial M(x)
selected from GF(pn)[x].

• For an order m polynomial and by abuse of notation we can write:
GF(GF(pn)m), which has pnm elements.

• Used in Reed-Solomon codes and Rijndael.

Cryptography Outline

• Introduction: terminology and background

• Primitives: one-way hash functions, trapdoors, …

• Protocols: digital signatures, key exchange, ..

• Number Theory: groups, fields, …

• Private-Key Algorithms: Rijndael, DES, RC4

• Cryptanalysis: Differential, Linear

• Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser

• Case Studies: Kerberos, Digital Cash

Private Key Algorithms

Encryption

Decryption

Key1

Key1

Cyphertext

Ek(M) = C

Dk(C) = M

Original Plaintext

Plaintext

What granularity of the message does Ek encrypt

Private Key: Block Ciphers • Encrypt one block at a time (e.g. 64 bits)

• ci = f(k,mi) mi = f’(k,ci)

• Keys and blocks are often about the same size.

• Equal message blocks will encrypt to equal codeblocks

• Why is this a problem?

• Various ways to avoid this:

• E.g. ci = f(k,ci-1 mi)
“Cipher block chaining” (CBC)

• Why could this still be a problem?

Solution: attach random block to the front of the
message

Security of block ciphers

• Ideal:

• k-bit -> k-bit key-dependent subsitution
(i.e. “random permutation”)

• If keys and blocks are k-bits, can be implemented with 22k entry
table.

Product Ciphers

• Multiple rounds each with

• Substitution on smaller blocks
Decorrelate input and output: “confusion”

• Permutation across the smaller blocks
Mix the bits: “diffusion”

• Substitution-Permutation Product Cipher

• Avalanch Effect: 1 bit of input should affect all output
bits, ideally evenly, and for all settings of other in bits

Iterated Block Ciphers

• Each round is the same
and typically involves
substitutions and
permutations

• Decryption works with
the same number of
rounds either by running
them backwards, or
using a Feistel network.

Round 1

Round 1

Round n

state

.

.

.

m

c

.

.

.

key

k1

k2

kn

Blocks and Keys

• The blocks and keys are organized as matrices of bytes.
For the 128-bit case, it is a 4x4 matrix.

151173

141062

13951

12840

bbbb

bbbb

bbbb

bbbb

151173

141062

13951

12840

kkkk

kkkk

kkkk

kkkk

Data block

b0, b1, …, b15 is the order of the bytes in the stream.

