
Information Security System

EC-415-F

6/30/2015

Lecture 1

Topics covered

Cryptography II

– Number theory (groups and fields)

– Block cyphers

–Algorithms in the Real World

Cryptography Outline

• Introduction: terminology and background

• Primitives: one-way hash functions, trapdoors, …

• Protocols: digital signatures, key exchange, ..

• Number Theory: groups, fields, …

• Private-Key Algorithms: Rijndael, DES, RC4

• Cryptanalysis: Differential, Linear

• Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser

• Case Studies: Kerberos, Digital Cash

Number Theory Outline • Groups

• Definitions, Examples, Properties

• Multiplicative group modulo n

• The Euler-phi function

• Fields

• Definition, Examples

• Polynomials

• Galois Fields

• Why does number theory play such an important role?

It is the mathematics of finite sets of values.

Groups
• A Group is a set G with binary operator * such that

1. Closure. For all a,b  G, a * b  G

2. Associativity. For all a,b,c  G, a*(b*c) = (a*b)*c

3. Identity. There exists I  G, such that for all
a  G, a*I=I*a=a

4. Inverse. For every a  G, there exist a unique element b  G, such
that a*b=b*a=I

• An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. For all a,b  G, a*b=b*a

Examples of groups

• Integers, Reals or Rationals with Addition

• The nonzero Reals or Rationals with Multiplication

• Non-singular n x n real matrices with Matrix Multiplication

• Permutations over n elements with composition
[01, 12, 20] o [01, 10, 22] = [00, 12, 21]

• We will only be concerned with finite groups, I.e., ones
with a finite number of elements.

Groups based on modular arithmetic

• The multiplicative group modulo n

Zn
*  {m : 1  m < n, gcd(n,m) = 1}

*  multiplication modulo p

Denoted as (Zn
*, *n)

• Required properties:

• Closure. Yes.

• Associativity. Yes.

• Identity. 1.

• Inverse. Yes.

• Example: Z15
* = {1,2,4,7,8,11,13,14}

• 1-1 = 1, 2-1 = 8, 4-1 = 4, 7-1 = 13, 11-1 = 11, 14-1 = 14

The Euler Phi Function

• If n is a product of two primes p and q, then

)/11()(
|

* pnn
np

n 

)1)(1()/11)(/11()( qpqppqn

Note that by Fermat’s Little Theorem:
*)(for)(mod 1 n

n ana 

Or for n = pq
*)1)(1(for)(mod 1 pq

qp apqa 

This will be very important in RSA!

Generators • Example of Z10
*: {1, 3, 7, 9}

x x2 x3 x4

1 1 1 1

3 9 7 1

7 9 3 1

9 1 9 1

For all n the group is cyclic.

Generators

Operations we will need

• Multiplication

• Can be done in O(log2 n) bit operations

• Finding the inverse:

• Euclids algorithm O(log n) steps

• Power:

• The power method O(log n) steps

Discrete Logarithms

• If g is a generator of Zn
*, then for all y there is a unique x

such that

• y = gx mod n

• This is called the discrete logarithm of y and we use the
notation

• x = logg(y)

• In general finding the discrete logarithm is conjectured to
be hard…as hard as factoring.

Euclid’s Algorithm

• Euclid’s Algorithm:

• gcd(a,b) = gcd(b,a mod b)

• gcd(a,0) = a

• “Extended” Euclid’s algorithm:

• Find x and y such that ax + by = z = gcd(a,b)

• Can be calculated as a side-effect of Euclid’s algorithm.

• Note that x and y can be zero or negative.

• This allows us to find a-1 mod n, for a  Zn
*

• In particular return x in ax + ny = 1.

Fields

• A Field is a set of elements F with binary operators * and + such that

1. (F, +) is an abelian group

2. (F \ I+, *) is an abelian group

3. Distribution. a*(b+c) = a*b + a*c

4. Cancellation. a*I+ = I+

• The order of a field is the number of elements.

• A field of finite order is a finite field.

• The reals and rationals with + and * are fields.

• Zp (p prime) with + and * mod p, is a finite field.

Division and Modulus

• Long division on polynomials (5[x]):

44

404

344

010

3041

41

2

2

23

232













x

xx

xx

xxx

xxxx

x

)4()1/()34(223  xxxx

)44()1mod()34(223  xxxx

)34()44()4)(1(232  xxxxx

Polynomials modulo Polynomials

• How about making a field of polynomials modulo another
polynomial? This is analogous to p (i.e., integers
modulo another integer).

• e.g. 5[x] mod (x2+2x+1)

• Does this work?

• Does (x + 1) have an inverse?

Definition: An irreducible polynomial is one that is
not a product of two other polynomials both of
degree greater than 0.

e.g. (x^2 + 2) for 5[x]

Analogous to a prime number.

Galois Fields

• The polynomials

• p[x] mod p(x)

• where
p(x)  p[x],
p(x) is irreducible,
and deg(p(x)) = n

• form a finite field. Such a field has p^n elements.

• These fields are called Galois Fields or GF(pn).

• The special case n = 1 reduces to the fields p

• The multiplicative group of GF(pn)/{0} is cyclic (this will be important later).

GF(2n) • Hugely practical!

• The coefficients are bits {0,1}.

• For example, the elements of GF(28) can be represented
as a byte, one bit for each term, and GF(264) as a 64-bit
word.

• e.g., x6 + x4 + x + 1 = 01010011

• How do we do addition?

Addition over 2 corresponds to xor.

• Just take the xor of the bit-strings (bytes or
words in practice). This is dirt cheap

Multiplication over GF(2n)

• If n is small enough can use a table of all combinations.

• The size will be 2n x 2n (e.g. 64K for GF(28)).

• Otherwise, use standard shift and add (xor)

• Note: dividing through by the irreducible polynomial on an overflow
by 1 term is simply a test and an xor.

• e.g. 0111 / 1001 = 0111

• 1011 / 1001 = 1011 xor 1001 = 0010

• ^ just look at this bit for GF(23)

Multiplication over GF(2n)

• typedef unsigned char uc;

uc mult(uc a, uc b) {
 int p = a;
 uc r = 0;
 while(b) {
 if (b & 1) r = r ^ p;
 b = b >> 1;
 p = p << 1;
 if (p & 0x10) p = p ^ 0x11B;
 }
 return r;
}

Finding inverses over GF(2n)

• Again, if n is small just store in a table.

• Table size is just 2n.

• For larger n, use Euclid’s algorithm.

• This is again easy to do with shift and xors.

Polynomials with coefficients in GF(pn)
• Recall that GF(pn) were defined in terms of coefficients that were

themselves fields (i.e., Zn).

• We can apply this recursively and define GF(pn)[x]

• e.g. for coefficients GF(23)

• f(x) = 001x2 + 101x + 010

• Where 101 is shorthand for x2+1.

• We can make a finite field by using an irreducible polynomial M(x)
selected from GF(pn)[x].

• For an order m polynomial and by abuse of notation we can write:
GF(GF(pn)m), which has pnm elements.

• Used in Reed-Solomon codes and Rijndael.

Cryptography Outline

• Introduction: terminology and background

• Primitives: one-way hash functions, trapdoors, …

• Protocols: digital signatures, key exchange, ..

• Number Theory: groups, fields, …

• Private-Key Algorithms: Rijndael, DES, RC4

• Cryptanalysis: Differential, Linear

• Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser

• Case Studies: Kerberos, Digital Cash

Private Key Algorithms

Encryption

Decryption

Key1

Key1

Cyphertext

Ek(M) = C

Dk(C) = M

Original Plaintext

Plaintext

What granularity of the message does Ek encrypt

Private Key: Block Ciphers • Encrypt one block at a time (e.g. 64 bits)

• ci = f(k,mi) mi = f’(k,ci)

• Keys and blocks are often about the same size.

• Equal message blocks will encrypt to equal codeblocks

• Why is this a problem?

• Various ways to avoid this:

• E.g. ci = f(k,ci-1  mi)
“Cipher block chaining” (CBC)

• Why could this still be a problem?

Solution: attach random block to the front of the
message

Security of block ciphers

• Ideal:

• k-bit -> k-bit key-dependent subsitution
(i.e. “random permutation”)

• If keys and blocks are k-bits, can be implemented with 22k entry
table.

Product Ciphers

• Multiple rounds each with

• Substitution on smaller blocks
Decorrelate input and output: “confusion”

• Permutation across the smaller blocks
Mix the bits: “diffusion”

• Substitution-Permutation Product Cipher

• Avalanch Effect: 1 bit of input should affect all output
bits, ideally evenly, and for all settings of other in bits

Iterated Block Ciphers

• Each round is the same
and typically involves
substitutions and
permutations

• Decryption works with
the same number of
rounds either by running
them backwards, or
using a Feistel network.

Round 1

Round 1

Round n

state

.

.

.

m

c

.

.

.

key

k1

k2

kn

Blocks and Keys

• The blocks and keys are organized as matrices of bytes.
For the 128-bit case, it is a 4x4 matrix.





















151173

141062

13951

12840

bbbb

bbbb

bbbb

bbbb





















151173

141062

13951

12840

kkkk

kkkk

kkkk

kkkk

Data block

b0, b1, …, b15 is the order of the bytes in the stream.

