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Topics covered

Cryptography i

— Number theory (groups and fields)
— Block cyphers

—Algorithms in the Real World



Cryptography Outline

® Introduction: terminology and background

® Primitives: one-way hash functions, trapdoors, ...

® Protocols: digital signatures, key exchange, ..

® NumberTheory: groups, fields, ...

® Private-Key Algorithms: Rijndael, DES, RC4

® Cryptanalysis: Differential, Linear

® Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser
Case Studies: Kerberos, Digital Cash



Number Theory Outline

Groups
® Definitions, Examples, Properties
® Multiplicative group modulo n

® The Euler-phifunction
® Fields

® Definition, Examples
® Polynomials

® Galois Fields

® Why does number theory play such an important role?

is the mathematics of finite sets of values.



Groups
A Group is a set G with binary operator * such that

1. Closure.Foralla,b WG, a*b QN G
2. Associativity. Foralla,b,c WG, a*(b*c) = (a*b)*c
3

. Identity. There exists | 'R G, such that for all
a NG, a*l=I*a=a

. Inverse. For every a N G, there exist a unique element b ‘W G, such
that a*b=b*a=/

)

An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. Forall a,b WG, a*b=b*a



Examples of groups

® Integers, Reals or Rationals with Addition
® The nonzero Reals or Rationals with Multiplication
® Non-singular n x n real matrices with Matrix Multiplication

® Permutations over n elements with composition
[OM1, 12 2#0o] 0[O, 130, 2M2] =[O0, 12, 2M1]

® We will only be concerned with finite groups, I.e., ones
with a finite number of elements.




roups based on modular arithmetic

®  The multiplicative group modulon
Z ®{m:10 m<n, gcd(n,m) =1}
* O multiplication modulo p
Denoted as (Z_.*, * )

® Required properties:

L Closure. Yes.

& Associativity. Yes.
> Identity. 1.

- Inverse. Yes.
Example: Z "= {1,2,4,7,8,11,13,14}
17=1,27=8, 47=4,77 213,120 =11, 14 = 14



The Euler Phi Function
p(n) =|Z,| = nfll(l—ll p)
p|n
® If nis a product of two primes p and q, then
¢(n) = pad-1/p)A-1/9)=(p-D(@-1)
Note that by Fermat's Little Theorem:
a’™ =1 (modn) for aeZ,
Or for n = pq
alPPeP =1 (mod pg) for aeZ,
This will be very important in RSA!




ExampleofZ_ *: {1, 3,7,

e}nerators

X X2 x3 x4

1 1 1 1
Generators < 3 : ; :

9 1 9 1

For all n the group is cyclic.




Operations we will need

® Multiplication

® (Canbe done in O(log? n) bit operations

® Finding the inverse:

® Euclids algorithm O(log n) steps

® Power:

® The power method O(log n) steps



Discrete Logarithms

® If gis a generator of Z 7, then for all y there is a unique x
such that

® y=gmodn

® This is called the discrete logarithm of y and we use the
notation

® x=logy(y)

® In general finding the discrete logarithm is conjectured to
be hard...as hard as factoring.



Euclid’s Algorithm

Euclid’s Algorithm:
gcd(a,b) = gcd(b,a mod b)
gcd(a,0) =a

“Extended” Euclid’s algorithm:
® Find xandy such that ax + by = z = gcd(a,b)
® Can be calculated as a side-effect of Euclid’s algorithm.

® Note that x and y can be zero or negative.

This allows us to find a*mod n, fora WZ_*

In particular return xin ax + ny = 1.




Fields

Field is a set of elements F with binary operators * and + such that

. (F, +)is an abelian group
(F\1,, *)is an abelian group

A
1
2.
3. Distribution. a*(b+c)=a*b + a*c
4.  Cancellation. a*l, =1,

The order of a field is the number of elements.

A field of finite order is a finite field.

The reals and rationals with + and * are fields.

Z,(p prime) with + and * mod p, is a finite field.



Long division on polynomials (A [x]):

Division and Modulus

Ix+4

X2 +1 >x3+4x2+0x+3
x>+ 0x° +1x+0

4x% +4X+3
4%° + 0X + 4

(X° +4x° +3)/(x* +1) = (X + 4) 4x+4

(X° +4x° +3)mod(x* +1) = (4x +4)
(X +D)(X +4) + (4x +4) = (X + 4x° +3)




Polynomials modulo Polynomials

® How about making a field of polynomials modulo another
polynomial? This is analogousto A (i.e., integers
modulo another integer).

® eq. /\S[x] mod (X2+2x+1)
® Does this work?
® Does (x + 1) have an inverse?

Definition: An irreducible polynomial is one that is
not a product of two other polynomials both of
degree greater than O.

e.g. (x"2 + 2) for Ag[x]

nalogous to a prime humber.




Galois Fields

® The polynomials
* A xImod p()

® where

PO) R A [x],
p(x) is irreducible,
and deg(p(x)) =n

® form afinite field. Such a field has p”n elements.
® Thesefields are called Galois Fields or GF(p").

® The special case n =1 reduces to the fields A

The multiplicative group of GF(p")/{o} is cyclic (this will be important later).



GF(2")

® The coefficients are bits {o,1}.

Hugely practical!

® For example, the elements of GF(28) can be represented
as a byte, one bit for each term, and GF(2°) as a 64-bit
word.

® e.g., xX°+x4+X+1=01010011

® How do we do addition?

Addition over A, corresponds to xor.

» Just take the xor of the bit-strings (bytes or
words in practice). This is dirt cheap




Multiplication over GF(2")

® If nis small enough can use a table of all combinations.
® The size will be 2" x 2" (e.g. 64K for GF(28)).
® Otherwise, use standard shift and add (xor)

® Note: dividing through by the irreducible polynomial on an overflow
by 1 term is simply a test and an xor.

® e.g. 0111/1001=0111
1011 /1001 = 1011 XOr 1001 = 0010
A just look at this bit for GF(23)



Multiplication over GF(2")

¢ typedef unsigned char uc;

uc mult (uc a, uc b) {

int p = a;
el = 0O
while (b) {
if (b & 1) r =1 © p;
b =Db > 1;
p = p << 1;
1if (p & 0x10) p = p © 0x11B;

return r;

}




Finding inverses over GF(2")

® Again, if nis small just store in a table.

® Tablesizeis just 2".

® For larger n, use Euclid’s algorithm.

® This is again easy to do with shift and xors.



olynomials with coefficients in GF(p")

Recall that GF(p") were defined in terms of coefficients that were
themselves fields (i.e., Z,).

We can apply this recursively and define GF(p™)[x]

e.g. for coefficients GF(23)
f(x) = 001X + 101X + 010
Where 101 is shorthand for x2+1.

We can make a finite field by using an irreducible polynomial M(x)
selected from GF(p")[x].

For an order m polynomial and by abuse of notation we can write:
GF(GF(p™™), which has p"™ elements.

Used in Reed-Solomon codes and Rijndael.




Cryptography Outline

® Introduction: terminology and background

® Primitives: one-way hash functions, trapdoors, ...

® Protocols: digital signatures, key exchange, ..

® NumberTheory: groups, fields, ...

® Private-Key Algorithms: Rijndael, DES, RC4

® Cryptanalysis: Differential, Linear

® Public-Key Algorithms: Knapsack, RSA, El-Gamal, Blum-Goldwasser
Case Studies: Kerberos, Digital Cash



Private Key Algorithms

Plaintext

|

Key; —

Encryption

E.(M)=C

Cyphertext

A

Key; =

Decryption

l

D(C) = M

Original Plaintext

What granularity of the message does E, encrypt



Encrypt clilgll}(oac-lggt a|1<t$'¥ :(e% l 8&;'&5)(: P h €rs
G = f(klm|) m; = f,(k,Ci)
Keys and blocks are often about the same size.

Equal message blocks will encrypt to equal codeblocks
® Why is this a problem?
Various ways to avoid this:

®* E.g.c.=f(k,c, am)
“Cipher block chaining” (CBC)

® Why could this still be a problem?
Solution: attach random block to the front of the



Security of block ciphers

® |deal:

® k-bit -> k-bit key-dependent subsitution
(i.e. “random permutation”)

® If keys and blocks are k-bits, can be implemented with 22¢ entry
table.



Product Ciphers

® Multiple rounds each with

® Substitution on smaller blocks
Decorrelate input and output: “confusion”

® Permutation across the smaller blocks
Mix the bits: “diffusion”

® Substitution-Permutation Product Cipher

® Avalanch Effect: 1 bit of input should affect all output
bits, ideally evenly, and for all settings of other in bits
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Iterated Block Ciphers

® Each round is the same
and typically involves
substitutions and
permutations

® Decryption works with
the same number of
rounds either by running
them backwards, or
using a Feistel network.



Blocks and Keys

‘b. b, b, b,
0 4 8 12 ( ko K, Kq k12\
0, D5 By D | [k ks kg ki
bz De D Dy o K ko Ky
\k3 K; ki ks y

b, b, b, b, )

-
¢ Thé b?ocks and keys are organized as matrices of bytes.
For the 128-bit case, it is a 4x4 matrix.

Data block
by, by, ..., by is the order of the bytes in the stream.



