Information Security Systems EC-615-F

Topics To be Covered

- Symmetric encryption
- Secret key encryption
- Shared key encryption

Symmetric Encryption

- or conventional / secret-key / single-key
- sender and recipient share a common key
- was the only type of cryptography, prior to invention of publickey in 1970's

Basic Terminology

- plaintext the original message
- ciphertext the coded message
- **cipher** algorithm for transforming plaintext to ciphertext
- **key** info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- **decipher (decrypt)** recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
 cryptology - the field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

Two requirements for secure use of symmetric encryption:

- a strong encryption algorithm
- a secret key known only to sender / receiver
 - $Y = \mathsf{E}_{\mathcal{K}}(X)$
 - $X = D_K(Y)$
- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

• can be characterized by:

- type of encryption operations used
 - substitution / transposition / product
- number of keys used
 - single-key or secret-key vs two-key or public-key
- way in which plaintext is processed
 - block / stream

Types of Cryptanalytic Attacks ciphertext only

 only know algorithm / ciphertext, statistical, can identify plaintext

known plaintext

• know/suspect plaintext & ciphertext to attack cipher

chosen plaintext

select plaintext and obtain ciphertext to attack cipher

chosen ciphertext

select ciphertext and obtain plaintext to attack cipher

chosen text

select either plaintext or ciphertext to en/decrypt to

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/µs	Time required at 10 ⁶ encryptions/ <i>µ</i> s
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56}=7.2\times 10^{16}$	$2^{55} \mu s = 1142$ years	10.01 hours
128	$2^{128}=3.4\times 10^{38}$	$2^{127}\mu{ m s}=5.4 imes10^{24}{ m ycars}$	5.4×10^{18} years
168	$2^{168}=3.7\times10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} y cars$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2\times10^{26}\mu\mathrm{s}=6.4\times10^{12}$ years	6.4×10^6 years

More Definitions

• unconditional security

 no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

given limited computing resources (e.g., time needed for calculations is greater than age of universe), the cipher cannot be broken

Types of Ciphers

- Substitution ciphers
- Permutation (or transposition) ciphers
- Product ciphers

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar (?)
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

meet me after the toga party

PHHW PH DIWHU WKH WRJD SDUWB

What's the key?