Information Security Systems EC-615-F

Lecture No 6

Topics Covered

- Substitution ciphers
- Permutation (or transposition) ciphers
- Product ciphers

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar (?)
- first attested use in military affairs
- replaces each letter by 3 rd letter on
- example:

```
meet me after the toga party
PHHW PH DIWHU WKH WRJD SDUWB
```

What's the key?

Caesar Cipher

- can define transformation as:

- mathematically give each letter a number
a b c def ghimik m
$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 5 & 6 & 7 & 10\end{array}$
n o p q r s t u v w x y \quad i
$\begin{array}{lllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ 24\end{array}$
- then have Caesar cipher as:
$C=\mathrm{E}(p)=(p+k) \bmod (26)$
$p=D(C)=(C-k) \bmod (26)$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
- A maps to $A, B, . . Z$
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- e.g., break ciphertext "GCUA VO DTGCM"

Polyalphabetic Ciphers

- another approach to improving security is to use multiple cipher alphabets
- called polyalphabetic substitution ciphers
- makes cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
use each alphabet in turn
repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher is the Vigenère Cipher
- effectively multiple caesar ciphers
- key is multiple letters long K = k1 k2 ... kd
- $i^{\text {th }}$ letter specifies $i^{\text {th }}$ alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
decryption simply works in reverse

Example

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive
key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
- see if look monoalphabetic or not
- if not, then need to determine the 'number of alphabets' in the key string (aka. the period of the key), since then can attach each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- e.g., repeated "VTW" in previous example
- suggests size of 3 or 9
then attack each monoalphabetic cipher individually using same techniques as before

ideally want a keyas long ass the:message Autokey Cipher

 Vigenère proposed the autokey cipher- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- but still have frequency characteristics to attack
- e.g., given key 'deceptive'
key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time Pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext \& any ciphertext there exists a key mapping one to other
- can only use the key once though have problem of safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

$$
\begin{gathered}
m e m a t r h t g p r y \\
e t e f e t e o a a t
\end{gathered}
$$

- giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
- two substitutions make a more complex substitution
- two transpositions make more complex transposition
- but a substitution followed by a transposition makes a new much harder cipher
this is bridge from classical to modern ciphers

Steganography

- an alternative to encryption
- hides existence of message
- using only a subset of letters/words in a longer message marked in some way
- using invisible ink
- hiding in LSB in graphic image or sound file
- has drawbacks
- high overhead to hide relatively few info bits

Summary

- have considered:
- classical cipher techniques and terminology
- cryptanalysis using letter frequencies
- polyalphabetic ciphers
- transposition ciphers
- product ciphers and rotor machines
- stenography

