Digital Signal Processing- Lecture 21

Topics to be covered:

O Up sampling

Up-Sampler

o Program 10_3 can be used to illustrate the frequencydomain properties of the up-sampler shown below for L = 4

Frequency-Domain Characterization

o Applying the *z*-transform to the input-output relation of a factor-of-*M* down-sampler

$$y[n] = x[Mn]$$

we get

$$Y(z) = \sum_{n = -\infty}^{\infty} x[Mn] z^{-n}$$

o The expression on the right-hand side cannot be directly expressed in terms of $X(\underline{z})_{\text{opyright } \odot}$

2001, S. K. Mitra

o To get around this problem, define a new sequence

 $x_{int}[n] = \begin{cases} x[n], & n = 0, \pm M, \pm 2M, \dots \\ 0, & \text{otherwise} \end{cases}$

$$Y(z) = \sum_{n=-\infty}^{\infty} x[Mn] z^{-n} = \sum_{n=-\infty}^{\infty} x_{int}[Mn] z^{-n}$$
$$= \sum_{n=-\infty}^{\infty} x_{int}[k] z^{-k/M} = X_{int}(z_{out, s. K. Mitr}^{1/M})$$
$$k = -\infty$$

o Taking the z-transform of and making use of $x_{int}[n] = c[n] \cdot x[n]$

we arrive at
$$c[n] = \frac{1}{M} \sum_{k=0}^{M-1} W_M^{kn}$$

 $K_{int}(z) = \sum_{n=-\infty}^{\infty} c[n]x[n]z^{-n} = \frac{1}{M} \sum_{n=-\infty}^{\infty} \left(\sum_{k=0}^{M-1} W_M^{kn}\right) x[n]z^{-n}$
 $= \frac{1}{M} \sum_{k=0}^{M-1} \left(\sum_{n=-\infty}^{\infty} x[n]W_M^{kn}z^{-n}\right) = \frac{1}{M} \sum_{k=0}^{M-1} X\left(zW_{opyright}^{-k}\right)$

Consider a factor-of-2 down-sampler with an input x[n] whose spectrum is as shown below

$$Y(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega/2}) + X(-e^{j\omega/2}) \}$$

Copyright © 2001, S. K. Mitra

o Now $X(-e^{j\omega/2}) = X(e^{j(\omega-2\pi)})$ by that the second term in the previous equation is simply obtained by shifting the first term to the right by an amount 2π as shown below

2001, S. K. Mitra

The plots of the two terms have an overlap, and hence, in general, the original "shape" of is lost when x[n] is down-sampled as indicated below

o This overlap causes the *aliasing* that takes place due to under-sampling
o There is no overlap, i.e., no aliasing, only if

 $X(e^{j\omega}) = 0 \quad \text{for } |\omega| \ge \pi/2$ $\circ \operatorname{Not}_{Y(e^{j\omega})}_{period 2\pi, even though the stretched version of is periodic with a period <math>X4\pi^{j\omega}$

> Copyright © 2001, S. K. Mitra

 o For the general case, the relation between the DTFTs of the output and the input of a factor-of-*M* down-sampler is given by

 $Y(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j(\omega-2\pi k)/M})$ o
shifted and stretched versions of
and scaled by a factor of 1/M

 $X(e^{j\omega})$

Copyright © 2001, S. K. Mitra

o Aliasing is absent if and only if

as shown below for $M = f q r | \omega | \ge \pi / M$

 $X(e^{j\omega}) = 0$ for $|\omega| \ge \pi/2$

Down-Sampler

o Program 10_4 can be used to illustrate the frequencydomain properties of the up-sampler shown below for M = 2

• The input and output spectra of a down-sampler with M = 3 obtained using Program 10-4 are shown below

2001, S. K. Mitra