# Digital Signal Processing- Lecture 20 

## Topics to be covered:

o Up sampling \& Down sampling

## Multirate Digital Signal Processing

## Basic Sampling Rate Alteration Devices

o Up-sampler - Used to increase the sampling rate by an integer factor
o Down-sampler - Used to decrease the sampling rate by an integer factor

## Up-Sampler

## Time-Domain Characterization

- An up-sampler with an up-sampling factor $L$, where $L$ is a positive integer, develops an output sequence with a sampling rate that is $L$ times larger than that of

o Block-diagram representation



## Up-Sampler

o Up-sampling operation is implemented by inserting - 1 equidistant zero-valued samples between two consecutive samples of $x[n]$
o Input-output relation

$$
x_{u}[n]=\left\{\begin{array}{cc}
x[n / L], & n=0, \pm L, \pm 2 L, \cdots \\
0, & \text { otherwise }
\end{array}\right.
$$

## Up-Sampler

o Figure below shows the up-sampling by a factor of 3 of a sinusoidal sequence with a frequency of 0.12 Hz obtained using Program 10_1


## Up-Sampler

o In practice, the zero-valued samples inserted by the up-sampler are replaced with appropriate nonzero values using some type of filtering process
o Process is called interpolation and will be discussed later

## Down-Sampler

## Time-Domain Characterization

o An down-sampler with a down-sampling factor M, where $M$ is a positive integer, develops an output sequence $y[n]$ with a sampling rate that is $(1 / M)$-th of that of the input sequence $x[n]$
o Block-diagram representation


## Down-Sampler

o Down-sampling operation is implemented by keeping every $M$-th sample of $x[n]$ and removing $M_{-1}$ in-between samples to generate $y[\bar{n}]$
o Input-output relation

$$
y[n]=x[n M]
$$

## Down-Sampler

o Figure below shows the down-sampling by a factor of 3 of a sinusoidal sequence of frequency 0.042 Hz obtained using Program 10_2



## Basic Sampling Rate Alteration Devices

o Sampling periods have not been explicitly shown in the block-diagram representations of the up-sampler and the down-sampler
o This is for simplicity and the fact that the mathematical theory of multirate systems can be understood without bringing the sampling period $T$ or the sampling frequency into the picture

$$
F_{T}
$$

## Down-Sampler

o Figure below shows explicitly the time-dimensions for the down-sampler

$$
x[n]=x_{a}(n T) \longrightarrow \downarrow M \longrightarrow y[n]=x_{a}(n M T)
$$

Input sampling frequency

$$
F_{T}=\frac{1}{T}
$$

Output sampling frequency

$$
F_{T}^{\prime}=\frac{F_{T}}{M}=\frac{1}{T^{\prime}}
$$

## Up-Sampler

o Figure below shows explicitly the timedimensions for the up-sampler

$$
\begin{aligned}
x[n]=x_{a}(n T) \longrightarrow \uparrow L & y^{[n]} \\
& =\left\{\begin{array}{cc}
x_{a}(n T / L), & n=0, \pm L, \pm 2 L, . . \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

hput sampling frequency

$$
F_{T}=\frac{1}{T}
$$

Output sampling frequency

$$
F_{T}^{\prime}=L F_{T}=\frac{1}{T_{\text {2001, S. .k. Mitra }}^{\prime}}
$$

## Basic Sampling Rate Alteration Devices

o The up-sampler and the down-sampler are linear but time-varying discrete-time systems
o We illustrate the time-varying property of a downsampler
o The time-varying property of an up-sampler can be proved in a similar manner

## Basic Sarnoplirig Řarte Alteratione Devices

o Consider a factor-of- $M$ down-sampler defined by
o lts output for an input
is then given $y_{1}\left[\begin{array}{l}\text { [ } \\ ]\end{array}\right.$

$$
y[n]=x[n M]
$$

$$
x_{1}[n]=x\left[n-n_{0}\right]
$$

o From the input-output relation of the down-sampler we obtain

$$
\begin{aligned}
& y_{1}[n]=x_{1}[M n]=x\left[M n-n_{0}\right] \\
& y\left[n-n_{0}\right]=x\left[M\left(n-n_{0}\right)\right] \\
& =x\left[M n-M n_{0}\right] \neq y_{1}[n]
\end{aligned}
$$

