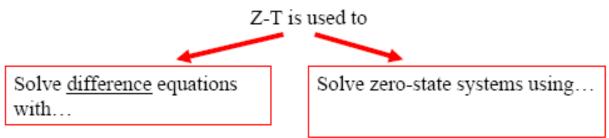
Digital Signal Processing- Lecture 9

Topics to be covered:

o Z-transform

Ch. 11 Z-Transform & D-T Systems

Z-Transform does for DT systems what the Laplace Transform does for CT systems



We will:

- Define the ZT
- See its properties
- Use the ZT and its properties to analyze D-T systems

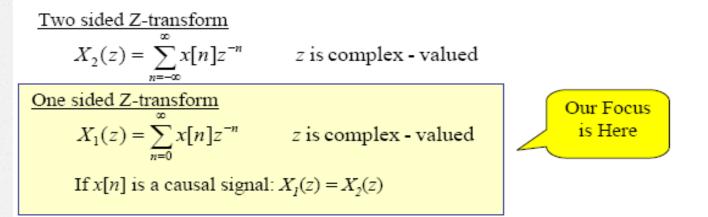
So for the Laplace transform we looked at: $s = \sigma + j\omega$ which is in <u>rect. form</u> But, for Z-transform we use:

Q: Why the change?

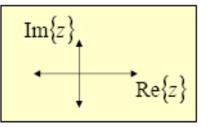
A: Suffice to say... it has to do with the periodic nature of the DTFT.

Remember that the DTFT is a periodic function of Ω ... and by using $z = \alpha e^{j\Omega}$ we stick Ω in as an angle which forces the periodic dependence on Ω .

Just like for Laplace... there are two forms of the Z-Transform:



So... the Z-Transform gives a complex-valued function on the "z-plane"

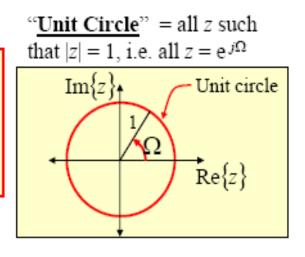


Recall: for Laplace we had the s-plane... and we divided it into two parts:

- those values of s to the left of the jω-axis (left-half plane)
- those values of s to the right of the jω-axis (right-half plane)

For the Z-Transform we'll need to divide the plane into parts:

- those values of z inside the unit circle
- those values of z outside the unit circle

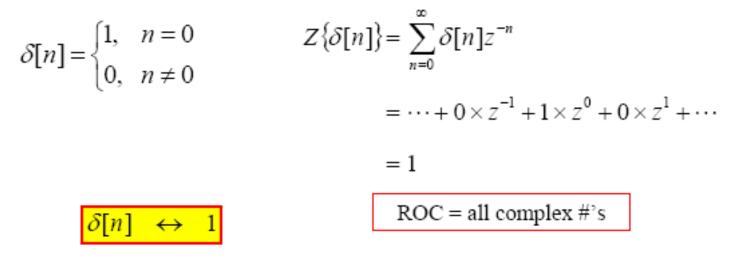


Region of Convergence (ROC)

Set of all z values for which the sum in the ZT definition converges Each signal has its own region of convergence.

(Same idea as for Laplace Transform)

Example of Finding the ZT: Unit Impulse Sequence



This result and many others are on Table of Z Transforms available on my website... please it rather than the one in your book, which has some errors Example of Finding the ZT: Unit Step u[n]

$$U(z) = \sum_{n=0}^{\infty} u[n] z^{-n} = \sum_{n=0}^{\infty} z^{-n} = \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$
ROC =
Using standard result
for "geometric sum"
$$u[n] \iff \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

Example of Finding the ZT: Causal Exponential

$$x[n] = a^n u[n]$$

Again using geometric sum:
$$X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n = \frac{z}{z-a} = \frac{1}{1-az^{-1}}$$

ROC = all z such that $|z| > |a|$
 $a^n u[n] \iff \frac{z}{z-a} = \frac{1}{1-az^{-1}}$

Relationship between ZT & DTFT

Recall: for some signals the CTFT was embedded in the LT (If the ROC includes the *j*ω-axis)

We have a similar condition for the DTFT and the ZT...

If ROC includes the unit circle, then we can say that:

$$X(\Omega) = X(z)\Big|_{z=e^{j\Omega}}$$

 $X(\Omega) =$ "walk around the unit circle" and get X(z) values

Explains why $X(\Omega)$ is periodic... Ω is an "angle around the unit circle"

 \Rightarrow Once we've walked around the unit circle... going farther just repeats the values X(z) that we are grabbing

 \Rightarrow We only need to worry about $\Omega \in [-\pi \text{ to } \pi)$

7.3 Inverse Z-T

Same story as for LT: using the integral inversion formula is hard!

The use of partial fractions here is <u>almost</u> exactly the same as for Laplace transforms...

... the only difference is that you first divide by *z* <u>before</u> performing the partial fraction expansion... then after expanding you multiply by *z* to get the final expansion.

Example of Partial Fraction for Inverse ZT:

Suppose you want to find the inverse ZT of

$$Y(z) = \frac{z+1}{z^2 + \frac{3}{4}z + \frac{1}{8}}$$

First divide Y(z) by z to get:

$$\frac{Y(z)}{z} = \frac{z+1}{z^3 + \frac{3}{4}z^2 + \frac{1}{8}z}$$

Then use matlab's residue to do a partial fraction expansion on Y(z)/z

[r,p,k]=residue([1 1],[1 0.75 0.125 0])		
r = 4	p = -0.5000	k = []
-12	-0.2500	
8	0	

Then we have:
$$\frac{Y(z)}{z} = \frac{4}{z+\frac{1}{2}} - \frac{12}{z+\frac{1}{4}} + \frac{8}{z} \implies Y(z) = \frac{4z}{z+\frac{1}{2}} - \frac{12z}{z+\frac{1}{4}} + 8$$
Now... the point of dividing by z becomes clear... you get terms like this (with

Now... the point of dividing by z becomes clear... you get terms like this (with z's in the numerator)... and they are on the ZT table!!!

$$y[n] = 4(-\frac{1}{2})^n u[n] - 12(-\frac{1}{8})^n u[n] + 8\delta[n]$$

11.2 Properties of ZT

Linearity: Same ideas as for CTFT, DTFT, and LT

Right Shift for Causal Signal

Let $x[n] = 0, n \le 0$

If $x[n] \leftrightarrow X(z)$, then

"Proof":
$$X(z) = x[0]z^{0} + x[1]z^{-1} + x[2]z^{-2} + ...$$

$$Z\{x[n-q]\} = \underbrace{0z^{0} + 0z^{-1} + ... + 0z^{-q+1}}_{= 0} + x[0]z^{-q} + x[1]z^{-q-1} + ...$$

$$= 0$$

$$= x[0]z^{0}z^{-q} + x[1]z^{-1}z^{-q} + x[2]z^{-2}z^{-q} + ...$$

$$= z^{-q}[x[0]z^{0} + x[1]z^{-1} + ...]$$

$$= X(z)$$
Pull out the z^{-q}

Example of Applying the Right-Shift Property for Causal Signals

Suppose we want to find the Z-T of the pulse signal:

$$p[n] = \begin{cases} 1, n = 0, 1, 2, ..., q-1 \\ 0, else \end{cases}$$

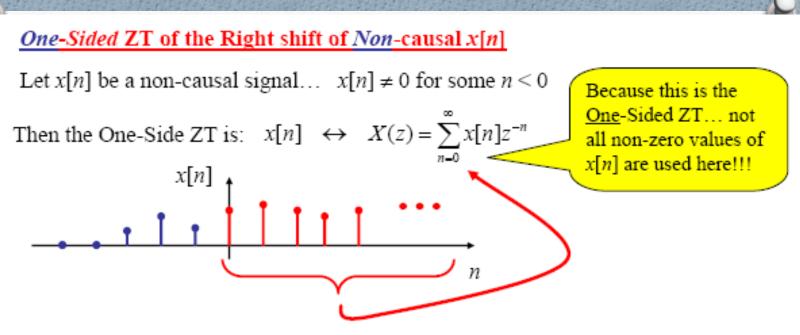
Well.. We can write this pulse in terms of the unit step: p[n] = u[n] - u[n-q]

Now, by linearity of the ZT we have: $P(z) = Z\{u[n]\} - Z\{u[n-q]\}$ But we already know that $Z\{u[n]\} = \frac{Z}{Z-1}$

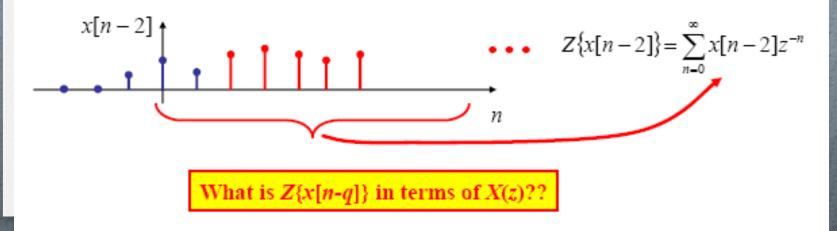
Using the Right-Shift Property gives $Z\{u[n-q]\} = z^{-q} \frac{z}{z-1}$

So

$$P(z) = \left[\frac{z}{z-1}\right] - z^{-q} \left[\frac{z}{z-1}\right] = \frac{z(1-z^{-q})}{z-1}$$



Note that right-shifting a <u>non</u>-causal signal brings new values into the onesided ZT summation!!!



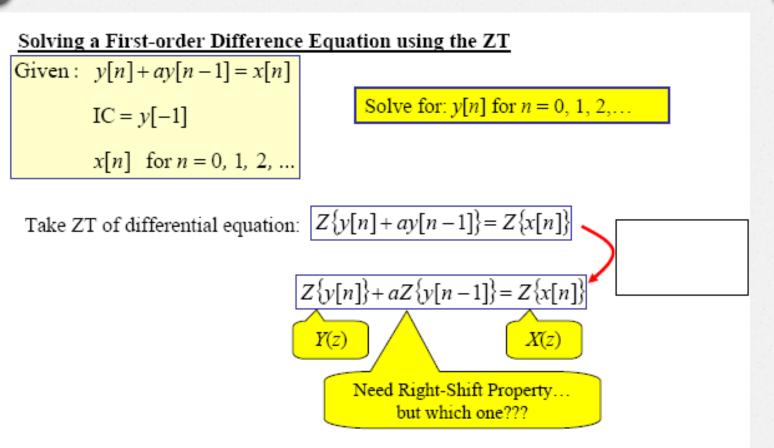
We'll write this property for the first 2 values of q...

$$\begin{array}{rcl} x[n-1] &\leftrightarrow & z^{-1}X(z) + x[-1] \\ x[n-2] &\leftrightarrow & z^{-2}X(z) + x[-1]z^{-1} + z[-2] \\ \vdots & \vdots \end{array}$$

... and then write the general result:

$$x[n-q] \leftrightarrow z^{-q}X(z) + x[-1]z^{-q+1} + x[-2]z^{-q+2} + \dots + z^{-1}x[-q+1] + x[-q]$$

$$\frac{\text{``Proof'' for } q = 2}{Z\{x[n-q]\} = x[-2]z^{0} + x[-1]z^{-1} + x[0]z^{-2} + x[1]z^{-3} + ...}$$
$$= x[-2]z^{0} + x[-1]z^{-1} + z^{-2}(x[0]z^{0} + x[1]z^{-1} + ...)$$
Parts that get ``shifted into'' the one-sided ZT's ``machinery''



Because of the non-zero IC we need to use the <u>non</u>-causal form:

$$Z\{y[n-1]\} = z^{-1}Y(z) + y[-1]$$

Using these results gives:

$$Y(z) + a[z^{-1}Y(z) + y[-1]] = bX(z)$$

Which is an algebraic equation that can be solved for Y(z):

