## Control Systems

## Lecture: 9

## Block diagrams

## \&

## Signal flow graphs

Automatic control

(a)
block

$$
X_{5}(s)=X_{1}(s)-X_{2}(s)+X_{3}(s)-X_{4}(s)
$$


(b) summer
(c)
pickoff point

(a)



$$
\begin{aligned}
& Y(s)=G(s) E(s) \\
& E(s)=R(s) \pm H(s) Y(s) \\
& Y(s)=G(s)[R(s) \pm H(s) Y \\
& T(s)=\frac{Y(s)}{R(s)}=\frac{G(s)}{1 \mp G(s) H(s)}
\end{aligned}
$$

$$
Y(s)=G(s)[R(s) \pm H(s) Y(s)]=G(s) R(s) \pm G(s) H(s) Y(s)
$$

## Automatic control

(a) Insertion or removal of unity gain

(b) Changing a summer sign

(c) Moving a pickoff point back

(d) Moving a pickoff point forward

Automatic Control by Meiling CHEN

## Automatic control


(e) Combining or expanding summations

(f) Combining or expanding junctions

( $g$ ) Moving a pickoff point behind a summation

(h) Moving a pickoff point forward of a summation






Example 2


Block


Summer and pickoff

(a)


Node

(b)

(a)

(b)

## Mason's Rule

Mason's gain rule is as follows: the transfer function of a system with signal-input, signal-output flow graphs is

$$
T(s)=\frac{p_{1} \Delta_{1}+p_{2} \Delta_{2}+p_{3} \Delta_{3}+\cdots}{\Delta}
$$

$\Delta=1$-(sum of all loop gains) $+($ sum of products of gains of all combinations if 2 nontouching loops)- (sum of products of gains of all combinations if 3 nontouching loops)+...

A path is any succession of branches, from input to output, in the direction of the arrows, that does not pass any node more than once.

A loop is any closed succession of branches in the direction of the arrows that does not pass any node more than once.

Example 3



