Lecture 10
 IP v4 Addressing

Topics Covered

- Dotted-decimal notation
- Examples
- Unicast, Multicast, reserved addresses
- Class Ranges of Internet Addresses

Introduction

An Internet address is made of four bytes (32 bits) that define a host's connection to a network.

Netid
Hostid

Note

An IP address is a 32-bit address.

Note

The IP addresses

are
 unique.

RULE:

If a protocol uses N bits to define an address, the address space is 2^{N} because each bit can have two different values (0 and 1) and N bits can have 2^{N} values.

Note

The address space of IPv4 is

2^{32}
 or
 4,294,967,296.

An address space is the total number of addresses used by the protocol.

Binary Notation

01110101100101010001110111101010

Dotted-decimal notation

1000000000001011000000110011111

Example 1

Change the following IP address from binary notation to dotted-decimal notation. 10000001000010110000101111101111

Solution

Example 2

Change the following IP address from dotted-decimal notation to binary notation. 111.56.45.78

Solution

Example 3

Find the error, if any, in the following IP address:
111.56.045.78

Solution

There are no leading zeroes in dotted-decimal notation (045).

Example 3 (continued)

Find the error, if any, in the following IP address:
75.45.301.14

Solution

In dotted-decimal notation, each number is less than or equal to $255 ; 301$ is outside this range.

Unicast, Multicast, and Reserved Addresses

Addresses in classes A, B, and C are for unicast communication, from one source to one destination. A host needs to have at least one unicast address to be able to send or receive packets.

Addresses in class D are for multicast communication, from one source to a group of destinations. If a host belongs to a group or groups, it may have one or more multicast addresses. A multicast address can be used only as a destination address, but never as a source address.

Addresses in class E are reserved. The original idea was to use them for special purposes. They have been used only in a few cases.

Class A	byte 1		byte 2	byte 3	byte 4
	Netid			Hostid	
Class B	10	Netid			
Class C	110		Netid		Hostid
Class D	1110				
Class E	1111				

Every router and host on internet has a unique IP address .all IP address are of 32 bit and they use source and destination field of the IP header. The first part of address is called network ID which identify the network on the internet and second called the host ID used to identify the individual host on that network. Classes of IP address :-

Netid and hostid

Note

In classful addressing, the address space is divided into five classes:
 A, B, C, D, and E.

Class Ranges of Internet Addresses

From

Class B

128.0.0.0
Netid
Hostid

Class C
192.0.0.0
Netid Hostid

Class D $\frac{$| 224.0 .0 .0 |
| :---: |
| Group address |}{22}

Class E
240.0.0.0

Undefined

To
127.255.255.255

Netid Hostid
191.255.255.255

Netid
Hostid
223.255.255.255

Netid Hostid
239.255.255.255

Group address
255.255.255.255

Undefined

Class A address

32 bit

The n / w field is of 7 bit and the host field is of 24 bits . One bit is used for the class type. So the n / w field can have numbers b / w 0.0.0.0 to 127.255.255.255. hence in cla. field indicates that it is class A n / w addn

Same way total number of host will be ranges from 0. 0.0.0 to 127. 255.255 .255

Class A address

0		Network ID (7 bit)	Host ID (24 bit)	
	\longleftarrow		24 bit	
0	0000000	00000000	00000000	00000000

Blocks in class A

128 blocks: 16,777,216 addresses in each block

Network Address in Class A

- Class A divided in to 128 blocks.
- We can assign class A addresses to 128 org.'s. each having 16,777,216 nodes .
- Each block have different netid. First block covers address from 0.0 .0 .0 to $\mathbf{0} .255 .255 .255$. here netid is 0 .
- $2^{\text {nd }}$ block covers from 1.0.0.0 to 1.255 .255 .255 with netid as 1.
- Last block covers addresses from 127.0.0.0 to 127.255.255.255 with netid as 127 .
- The first address of each block is used as network address which assigned to any organization and identify the organization to the rest of network.
- A network address is an address that defines a network. It can not assigned to a host. A n/w address is netid+hostid .

Note

Millions of class A addresses are wasted.

Class B address

10	14 bit / network id	16 bit / host id

The first field defines the class type and second field defines the networks. And last field defines the hosts. The n/w field values lies b/w 128 to 191. The first block covers the address from 128.0.0.0 to 128.255.255.255 and last block covers from 191.0.0.0 to 191.255.255.255.

$$
14 \text { bits }(6+8)
$$

 128.0.0.0

10	111111	1111111	$\begin{aligned} & \text { Host ID } \\ & (8+8) \end{aligned}$
		255	

191.255.255.255

Blocks in class B

16,384 blocks: 65,536 addresses in each block

Class B Addresses

- Class B divided in to 16384 blocks.
- We can assign B class addresses to 16384 org.'s, each having 65536 nodes.
- Each block has different netid. First block covers address from 128.0.0.0 to 128.0.255.255. Here netid is $\mathbf{1 2 8 . 0}$.
- $2^{\text {nd }}$ block covers from 128.1.0.0 to 128.1.255.255 with netid as 128.1.
- Last block covers addresses from 191.255.0.0 to 191.255.255.255 with netid as 191.255.
- Class B address are assigned to middle size org. having a large no's of nodes .

Note

Many class B addresses are wasted.

Class C address

32 bit

110	Network ID (21 bit)	Host ID (8 bit)

21 bits($5+8+8$)

| 110 | 00000 | 00000000 | 00000000 | Host ID(8 bit) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$

110	00000	00000000	00000000	Host ID(8 bit)
\longleftarrow	192	192.0.0.0	0	$0{ }_{0}^{\downarrow}$

110	11111	11111111	11111111	Host ID'8 bit)
	223		255	255
223.255-255.255				

Blocks in class C

2,097,152 blocks: 256 addresses in each block

Class C Addresses

- Class C divided in to 2,097,152 blocks.
- We can assign C class addresses to 2,097,152 org.'s. each having 256 nodes.
- First block covers address from 192.0.0.0 to 192.0 .0 .255 . here netid is $\mathbf{1 9 2 . 0 . 0}$
- Last block covers addresses from 223.255.255.0 to 223.255.255.255 with netid as 223.255.255.
- Class C address are assigned to small size org. having a less no's of nodes .

Note

The number of addresses in

a class C block is smaller than
the needs of most organizations.

