
Mobile Computing
Lecture 30

Windows CE 2

Contents

 Compatibility
 Windows CE 6.0 OAL Design
 Drivers

Compatibility

 Binary compatibility for applications is the key goal
 Well behaved applications will work w/ little/no changes

 Compatibility maintained through CoreDLL
 Minimize impact on Win32 APIs
 Changes hidden in API libraries

 Apps using undocumented techniques…
 Will likely have to be modified
 Such as passing handles or pointers between processes

 Main changes will be in drivers and services
 Some drivers will migrate with little work

Application Porting Test Cases

 WM 5.0 ported to Windows CE 6.0 Beta

 Running Windows CE 5.0 commercial applications
on Windows CE 6.0 Beta

Compatibility Tester

 Identifies removed / deprecated / changed APIs
 Supports both static and runtime analysis
 Produces a detail report of any issues it finds
 Includes documentation and suggestions

 Release before Windows CE 6.0 RTM
 Will allow customers to prepare ahead of time

Windows CE 6 Beta BSPs

Family BSP Kernel Will be in the beta release
(Yes/No)

ARM

Intel Mainstone III (C-Step) ARMv4i Yes

Plato VoIP Reference
Platform ARMv4i Yes

Device Emulator ARMv4i Yes

Aruba Board ARMv4i No

TI OMAP 2420 ARMv6 Yes

MIPS NEC Rockhopper SG2
Vr5500

MIPSII & II_PF, MIPSIV &
IV_FP Yes

SH4 Hitachi/Renesas Aspen SH4 Yes

x86 x86 (CEPC) X86 Yes

CodeCode TitleTitle SpeakersSpeakers

EMB321EMB321 Porting a Windows CE 5.0 BSP to the next release of Windows CEPorting a Windows CE 5.0 BSP to the next release of Windows CE Travis Hobrla; Travis Hobrla;
Don WeberDon Weber

EMB308EMB308 Windows CE Secure Boot LoaderWindows CE Secure Boot Loader Steve Steve MailletMaillet; ;
Glen LangerGlen Langer

OAL Changes

 OAL split from kernel
 Becomes “NK.EXE”
 Kernel code becomes “Kernel.DLL”

 Enables separate updates

 Overall OAL structure remains the same
 Same OEM functions
 OAL / kernel interface through shared structures

Windows CE 5.0 OAL Design

Windows CE 6.0 OAL Design

Drivers

 Two types of drivers will be supported
 Kernel Mode for performance
 User Mode for robustness

 The overall structure of the drivers remains
 Main changes are in how the drivers access client memory
 Drivers are still DLLs
 Same Stream interface

Kernel Mode Drivers

 Operate in kernel’s address space
 Calls to operating system functions very fast
 ISRs and ISTs operate in the same process space
 Thunking layer available for user interface services

 Drivers needing the best performance should be
kernel mode
 Such as those with lots of quick API calls

User Mode Drivers

 Loaded by udevices.exe
 No access to kernel structures or memory
 Same API support as applications

 Examples:
 Expansion buses like USB and SDIO

 Drivers where performance is not a factor should
consider moving to user mode
 Called less often and do more work

Porting Drivers to the New
Windows CE OS

 Most drivers become kernel mode drivers
 Driver writers must focus on security and stability

 Maximum backward-compatibility
is maintained

 Though, some driver modifications are required
 Deprecated APIs
 Asynchronous buffer access
 User Interface Handling

Caller Process Mapping (5.0)

Slot 31 CloneSlot 31 Clone

Slot 2Slot 2

Slot 3Slot 3

.

.

.

0000 0000

0200 0000

0400 0000

0600 0000

3E00 0000

4000 0000

4200 0000

FileSys
Device Mgr

Slot 32Slot 32

Application (Slot 31)Application (Slot 31)

Slot 3 CloneSlot 3 Clone

Slot 2Slot 2
Slot 3Slot 3

.

.

.

FileSys
Device Mgr

Slot 32Slot 32

Slot 31Slot 31

At call to DeviceIoControl When DeviceIoControl processed

Caller Process Mapping (6.0)

Application

Kernel

Application

Kernel

Kernel
Drivers

Kernel
Drivers

Before Call During Call

Application
space visible
to application

Application
Space visible
to driver

Kernel
space visible
to driver

Kernel
space hidden
from application

Handling Calls

 App memory already mapped correctly
 Can access it without re-mapping pointers

 Marshalling Helper Library
 Provides APIs for handling user data

 Deprecated APIs:
 SetProcPermissions, MapPtrToProcess, MapCallerPointer, …

Driver Pointer Safety

 OS checks buffers referenced by caller parameters
 Buffers are accessed checked

 Embedded pointers are valid but not access checked
 Safe drivers should use

CeMapCallerPointer / CeCloseCallerBuffer
 Paranoid drivers should force duplication of buffer

Asynchronous Access

 Windows CE 6 forces new treatment of
asynchronous access from driver to application

 Old:
 SetProcPermissions to change thread access rights

 New:
 CeAllocAsynchronousBuffer / CeFreeAsynchronousBuffer to

marshal data

Summary

 Great new architecture
 Removes the old limits
 Performance expected as good as current

 Memory footprint similar

 OAL / Driver porting fairly straightforward

