Mobile Computing Lecture 20 Protocols for Mobile Computing 1

Contents

- Mobile network layer
- Goals, Assumptions and Requirements
- Motivation for Mobile IP
- Requirements to Mobile IP
- Overview
- Encapsulation
- Problems with mobile IP

Mobile network layer

- In this protocols and mechanisms developed for the network layer to support mobility.
- It provides protocol enhancement that allows transparent routing of IP datagrams to mobile nodes in the internet.
- Mobile IP Adds mobility support to the internet network layer protocol IP.
- RFC 2002 is a reference document for the complete detail about the mobile IP.

Goals, Assumptions and Requirements

- Receiving of IP datagram after leaving your home network.
- Now nodes needs a so-called topologically correct address.

Quick Solution

- - Assign new IP address when enter into new location.
 - Increase problem with higher layer protocols like TCP, as they rely on IP layer.
 - Routers are built for fast forwarding but not for fast update of routing table.
- Quick solution not working.

Motivation for Mobile IP

Routing

- based on IP destination address,
- o network prefix (e.g. 129.13.42) determines physical subnet
- change of physical subnet => change of IP address to have a topological correct address (standard IP)

• Solution: Temporarily change routing table entries for mobile host

• Problem: does not scale if many mobile hosts or frequent location changes

• Solution: Change mobile host IP-address

- o adjust the host IP address depending on the current location
- DNS updates take to long time
- Old TCP connections break

Requirements to Mobile IP

Transparency

- mobile end-systems keep IP address
- Continuous service after link interruption
- point of connection to the fixed network can be changed

Compatibility

- No changes to current hosts, OS, routers
- mobile end-systems can communicate with fixed systems
- Security
 - authentication of all registration messages
- Efficiency and scalability
 - only few additional messages to mobile system (low bandwidth)
 - Global support for large number of mobile systems

Terminology

- Mobile Node (MN)
 - Laptop, PDA, etc.. that may move about
- Home Agent (HA)
 - Router in home network of the MN, helps in forwarding
 - registers current MN location, tunnels IP datagrams to COA
- Foreign Agent (FA)
 - Router in current foreign network of MN
 - o forwards tunneled datagrams to the MN
- Care-of Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - o can be chosen, e.g., via DHCP
- Correspondent Node (CN)
 - Node that wants to communicate with MN

Network integration

- Agent Advertisement
 - HA and FA periodically send advertisement messages into their subnets
 - MN reads a COA from the FA advertisement messages
- Registration (always limited lifetime!)
 - MN signals COA to the HA via the FA, HA acknowledges
 - Messeges need to be secured by authentication
- Advertisement
 - HA advertises the MN IP address (as for fixed systems)
 - routers adjust their entries, (HA responsible for a long time)
 - All packets to MN are sent to HA

Encapsulation

• Encapsulation of one packet into another as payload

- o e.g. IP-in-IP-encapsulation (mandatory, RFC 2003)
- tunnel between HA and COA

	original IP header	original data
new IP header	new data	
outer header	inner header	original data

Optimization of packet forwarding

• Triangular Routing

- sender sends all packets via HA to MN
- Triangular routes longer, higher latency and network load

• "Solutions"

- HA informs a sender about the location of MN
- sender learns current location of MN
- direct tunneling to this location
- big security problems!
- Change of FA
 - packets on-the-fly during the change can be lost
 - new FA informs old FA to avoid packet loss
 - o old FA forwards remaining packets to new FA
 - Update also enables old FA to release resources for MN

Mobile IP and IPv6

- Mobile IP was developed for IPv4, but IPv6 simplifies the protocols
 - o security is integrated, not add-on, authentication of registration included
 - COA can be assigned via auto-configuration (DHCPv6 is one candidate)
 - \circ every node has address autoconfiguration
 - no need for a separate FA, all routers perform router advertisement
 - MN can signal a sender directly the COA, without HA
 - "soft" hand-over, i.e. without packet loss supported
 - MN sends the new COA to its old router
 - × old router encapsulates all packets for MN, forwards them to new COA
 - × authentication is always granted

Problems with mobile IP

- Security
 - FA typically belongs to another organization
 - authentication with FA problematic
 - patent and export restrictions
- Firewalls
 - Firewalls filter based on IP addresses
 - FA encapsulates packets from MN
 - Home firewalls rejects packet from MN (unless reverse tunneling)
 - MN can no longer send packets back to home network
- QoS
- Security, firewalls, QoS etc. are topics of current research and discussions!