Mobile Computing Lecture 12 Digital Mobile Phone Systems 5

Contents

- DECT
 - Architecture
 - Layers
- TETRA
 - Architecture
 - \circ Technology
 - Data Rates

DECT

- DECT (Digital European Cordless Telephone) standardized by ETSI (ETS 300.175-x) for cordless telephones
- standard describes air interface between base-station and mobile phone
- DECT has been renamed for international marketing reasons into "Digital Enhanced Cordless Telecommunication"
- Characteristics
 - frequency: 1880-1990 MHz
 - channels: 120 full duplex
 - $\circ~$ duplex mechanism: TDD (Time Division Duplex) with 10 ms frame length
 - multplexing scheme: FDMA with 10 carrier frequencies, TDMA with 2x 12 slots
 - modulation: digital, Gaußian Minimum Shift Key (GMSK)
 - power: 10 mW average (max. 250 mW)
 - range: approx. 50 m in buildings, 300 m open space

DECT layers I

- Physical layer
 - modulation/demodulation
 - generation of the physical channel structure with a guaranteed throughput
 - o controlling of radio transmission
 - × channel assignment on request of the MAC layer
 - × detection of incoming signals
 - sender/receiver synchronization
 - collecting status information for the management plane

• MAC layer

- maintaining basic services, activating/deactivating physical channels
- multiplexing of logical channels
 - × e.g., C: signaling, I: user data, P: paging, Q: broadcast
- segmentation/reassembly
- error control/error correction

DECT layers II

- Data link control layer
 - creation and keeping up reliable connections between the mobile terminal and basestation
 - two DLC protocols for the control plane (C-Plane)
 - connectionless broadcast service: paging functionality
 - Lc+LAPC protocol: in-call signaling (similar to LAPD within ISDN), adapted to the underlying MAC service
 - several services specified for the user plane (U-Plane)
 - × null-service: offers unmodified MAC services
 - frame relay: simple packet transmission
 - × frame switching: time-bounded packet transmission
 - error correcting transmission: uses FEC, for delay critical, time-bounded services
 - standwidth adaptive transmission
 - * "Escape" service: for further enhancements of the standard

DECT layers III

- Network layer
 - o similar to ISDN (Q.931) and GSM (04.08)
 - offers services to request, check, reserve, control, and release resources at the basestation and mobile terminal
 - o resources
 - × necessary for a wireless connection
 - necessary for the connection of the DECT system to the fixed network
 - main tasks
 - x call control: setup, release, negotiation, control
 - call independent services: call forwarding, accounting, call redirecting
 - mobility management: identity management, authentication, management of the location register

Enhancements of the standard

- Several "DECT Application Profiles" in addition to the DECT specification
 - GAP (Generic Access Profile) standardized by ETSI in 1997
 - assures interoperability between DECT equipment of different manufacturers (minimal requirements for voice communication)
 - enhanced management capabilities through the fixed network: Cordless Terminal Mobility (CTM)

- DECT/GSM Interworking Profile (GIP): connection to GSM
- ISDN Interworking Profiles (IAP, IIP): connection to ISDN
- Radio Local Loop Access Profile (RAP): public telephone service
- CTM Access Profile (CAP): support for user mobility

TETRA - Terrestrial Trunked Radio

- Trunked radio systems
 - many different radio carriers
 - assign single carrier for a short period to one user/group of users
 - o taxi service, fleet management, rescue teams
 - $\circ~$ interfaces to public networks, voice and data services
 - o very reliable, fast call setup, local operation

TETRA - ETSI standard

- o formerly: Trans European Trunked Radio
- point-to-point and point-to-multipoint
- encryption (end-to-end, air interface), authentication of devices, users and networks
- o group call, broadcast, sub-second group-call setup
- ad-hoc ("direct mode"), relay and infrastructure networks
- o call queuing with pre-emptive priorities

TETRA – Network Architecture

TETRA – Direct Mode I

 Direct Mode enables ad-hoc operation and is one of the most important differences to pure infrastructure-based networks such as GSM, cdma2000 or UMTS.

TETRA – Technology

- Services
 - Voice+Data (V+D) and Packet Data Optimized (PDO)
 - Short data service (SDS)

Frequencies

Duplex: FDD, Modulation: DQPSK

Europe (in MHz, not all available yet)

× 380-390 UL / 390-400 DL; 410-420 UL / 420-430 DL, 450-460 UL / 460-470 DL; 870-876 UL / 915-921 DL

Other countries

× 380-390 UL / 390-400 DL; 410-420 UL / 420-430 DL, 806-821 UL / 851-866 DL

TETRA – Data Rates

Infrastructure mode, V+D in kbit/s

• No. of time slots	1	2	3	4
 No protection 	7.2	14.4	21.6	28.8
 Low protection 	4.8	9.6	14.4	19.2
 High protection 	2.4	4.8	7.2	9.6

- TETRA Release 2 Supporting higher data rates
 - TEDS (TETRA Enhanced Data Service)
 - o up to 100-500 kbit/s
 - depends on modulation (DQPSK, D8PSK, 4/16/64QAM) and channel width (25/50/100/150 kHz)
 - backward compatibility