Mobile Computing Lecture 1 Introduction

CONTENTS

- Wireless communication
- Wireless data technologies
- Frequencies for radio signals
- Antennas and signal propagation
- Frequencies & Regulation
- Signals
- Antennas
- Signal propagation ranges
- Signal propagation
- Multipath propagation
- Effects of mobility

Wireless communication Communication is an essential need of human being, e.g., conversation, letter "Wireless" used to be the only (limited and unreliable) way to communicate in ancient times: 烽火狼烟、摔杯为号、铜镜反光、鸣金收兵... Modern wireless communications are based on the electromagnetic field theory (Maxwell's equations, Marconi's invention)

Wireless data technologies

- Radio communication system
- Broadcasting
- Amateur radio
- Land Mobile Radio or Professional Mobile Radio: TETRA, P25, OpenSky, EDACS, DMR, dPMR
- Cordless telephony:DECT (Digital Enhanced Cordless Telecommunications)
- Cellular networks: OG, 1G, 2G, 3G, Beyond 3G (4G), Future wireless
- List of emerging technologies
- Short-range point-to-point communication : Wireless microphones, Remote controls, IrDA, RFID (Radio Frequency Identification), TransferJet, Wireless USB, DSRC (Dedicated Short Range Communications), EnOcean, Near Field Communication
- Wireless sensor networks: ZigBee, EnOcean; Personal area networks, Bluetooth, TransferJet, Ultra-wideband (UWB from WiMedia Alliance).
- Wireless networks: Wireless LAN (WLAN), (IEEE 802.11 branded as Wi-Fi and HiperLAN), Wireless Metropolitan Area Networks (WMAN) and (LMDS, WiMAX, and HiperMAN)

Frequencies for communication

- VLF = Very Low Frequency
- UHF = Ultra High Frequency
- LF = Low Frequency
- SHF = Super High Frequency
- MF = Medium Frequency
- EHF = Extra High Frequency
- HF = High Frequency UV = Ultraviolet Light
- VHF = Very High Frequency
- Frequency and wave length:
 λ = c/f
- wave length λ , speed of light $c \cong 3x10^8 \text{m/s}$, frequency f

Cont..

- VHF-/UHF-ranges for mobile radio
 - o simple, small antenna for cars
 - deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links, satellite communication
 - small antenna, beam forming
 - large bandwidth available

Wireless LANs use frequencies in UHF to SHF range

- some systems planned up to EHF
- limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - × weather dependent fading, signal loss caused by heavy rainfall etc.

Frequencies & Regulation

• ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe	USA	Japan
Cellular Phones	G SM 450-457, 479- 486/460-467,489- 496, 890-915/935- 960, 1710-1785/1805- 1880 UMTS (FDD) 1920- 1980, 2110-2190 UMTS (TDD) 1900- 1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs	IEEE 802.11 2400-2483 HIPERLAN 2 5150-5350, 5470- 5725	902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825	IEEE 802.11 2471-2497 5150-5250
Others	RF-Control 27, 128, 418, 433, 868	RF-Control 315, 915	RF-Control 426, 868

Signals

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data

Classification

- continuous time/discrete time
- continuous values/discrete values
- analog signal = continuous time and continuous values
- digital signal = discrete time and discrete values
- signal parameters of periodic signals:
- period T, frequency f=1/T, amplitude A, phase shift ϕ
 - \circ sine wave as special periodic signal for a carrier:

 $s(t) = At \sin(2 \pi ft t + \phi t)$

Antennas

- Getting rid of wires
- Transmitting signals through space without guidance
- Antennas couple electromagnetic energy to and from space to and from a wire or coaxial cable
- Types
 - Isotropic radiator
 - Marconi antenna
 - Directional antenna
 - Sectorized antenna

Signal propagation ranges

- Transmission range
 communication possible
 low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to 1/d² in vacuum much more in real environments
- (d = distance between sender and receiver)
- Receiving power additionally influenced by
 - o fading (frequency dependent)
 - Shadowing
 - reflection at large obstacles
 - o refraction depending on the density of a medium
 - scattering at small obstacles
 - o diffraction at edges

Multipath propagation

- Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction
- Time dispersion: signal is dispersed over time
 - interference with "neighbor" symbols, Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted
 - distorted signal depending on the phases of the different parts

Effects of mobility

- Channel characteristics change over time and location
 - o signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
- quick changes in the power received (short term fading)
- Additional changes in
 - distance to sender
 - obstacles further away
- slow changes in the average power received (long term fading)

