
COURSE NAME:
DATA WAREHOUSING & DATA MINING

LECTURE 15
TOPICS TO BE COVERED:

 Apriori Algorithm
 FP Growth

 Apriori employs an iterative approach known as a level-
wise search, where k-itemsets are used to explore
(k+1)-itemsets

 Initially, the set of frequent 1-itemsets is found by
scanning the database to accumulate the count for
each item, and collecting those items that satisfy
minimum support.

 The resulting set is denoted L1.Next, L1 is used to find
L2, the set of frequent 2-itemsets, which is used to find
L3, and so on, until no more frequent k-itemsets can be
found. The finding of each Lk requires one full scan of
the database.

THE APRIORI ALGORITHM

 To improve the efficiency of the level-wise generation of
frequent itemsets, an important property called the Apriori
property, presented below, is used to reduce the search
space.

 Apriori property: All nonempty subsets of a frequent
itemset must also be frequent.

 TheApriori property is based on the following observation.
 By definition, if an itemset I does not satisfy the minimum

support threshold, min sup, then I is not frequent; that is,
P(I) < min sup. If an item A is added to the itemset I, then
the resulting itemset (i.e., I A) cannot occur more
frequently than I. Therefore, I A is not frequent either;
that is, P(I A) < min sup.

THE APRIORI PROPERTY

 “How is the Apriori property used in the
algorithm?” To understand this, let us look at
how Lk-1 is used to find Lk for k>=2. A two-step
process is followed, consisting of join and prune
actions.

 1. The join step: To find Lk, a set of candidate k-
itemsets is generated by joining Lk-1 with itself.

 2. The prune step: Ck is a superset of Lk, that
is, its members may or may not be frequent, but
all of the frequent k-itemsets are included inCk.

THE APRIORI PROPERTY

THE APRIORI ALGORITHM—AN EXAMPLE

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2

Example

Example

THE APRIORI ALGORITHM

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in
Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;

IMPORTANT DETAILS OF APRIORI
 How to generate candidates?

 Step 1: self-joining Lk

 Step 2: pruning
 How to count supports of candidates?
 Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}
 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4={abcd}

HOW TO GENERATE CANDIDATES?

 Suppose the items in Lk-1 are listed in an order
 Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q
where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-

1

 Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck

It can Suffer from two nontrivial cost:
 It may need to generate a huge number of candidate sets.
 It may need to repeatedly scan the database and check a

large set of candidates by pattern matching.
 An interesting method in this attempt is called frequent-

pattern growth, or simply FP-growth, which adopts a
divide-and-conquer strategy as follows. First, it compresses
the database representing frequent items into a frequent-
pattern tree, or FP-tree, which retains the itemset
association information. It then divides the compressed
database into a set of conditional databases (a special kind
of projected database), each associated with one frequent
item or “pattern fragment,” and mines each such database
separately.

FREQUENT PATTERN GROWTH

 Frequent pattern growth (FP-growth) is a
method of mining frequent itemsets without
candidate generation. It constructs a highly
compact data structure (an FP-tree) to
compress the original transaction database.
Rather than employing the generate and test
strategy of Apriori-like methods, it focuses on
frequent pattern (fragment) growth, which
avoids costly candidate generation, resulting
in greater efficiency.

Frequent Pattern Growth

Example

EXAMPLE

 FP-growth (finding frequent itemsets without
candidate generation). The first scan of the
database is the same as Apriori, which
derives the set of frequent items (1-itemsets)
and their support counts (frequencies). Let
the minimum support count be 2. The set of
frequent items is sorted in the order of
descending support count. This resulting set
or list is denoted L. Thus, we have L ={{I2: 7},
{I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.

 An FP-tree is then constructed as follows. First, create the root of the
tree, labeled with “null.” Scan database D a second time.

 The items in each transaction are processed in L order (i.e., sorted
according to descending support count), and a branch is created for
each transaction.

 For example, the scan of the first transaction, “T100: I1, I2, I5,” which
contains three items (I2, I1, I5 in L order), leads to the construction of the
first branch of the tree with three nodes, (I2: 1), (I1:1), and (I5: 1), where
I2 is linked as a child of the root, I1 is linked to I2, and I5 is linked to I1.
The second transaction, T200, contains the items I2 and I4 in L order,
which would result in a branch where I2 is linked to the root and I4 is
linked to I2. However, this branch would share a common prefix, I2, with
the existing path for T100. Therefore, we instead increment the count of
the I2 node by 1, and create a new node, (I4: 1),which is linked as a
child of (I2: 2). In general, when considering the branch to be added for
a transaction, the count of each node along a common prefix is
incremented by 1, and nodes for the items following the prefix are
created and linked accordingly.

Example

Example

Example

MINING FREQUENT ITEMSETS USING VERTICAL
DATA FORMAT

 Mining frequent itemsets using vertical data
format (ECLAT = Equivalence Class
Transformation) is a method that transforms
a given data set of transactions in the
horizontal data format of TID-itemset into the
vertical data format of item-TID set. It mines
the transformed data set by TID set
intersections based on the Apriori property
and additional optimization techniques, such
as diffset.

Example

The vertical data format of the transaction data set D of
given table

Example

Example

CHALLENGES OF FREQUENT PATTERN MINING

 Challenges

 Multiple scans of transaction database

 Huge number of candidates

 Tedious workload of support counting for candidates

 Improving Apriori: general ideas

 Reduce passes of transaction database scans

 Shrink number of candidates

 Facilitate support counting of candidates

MINING VARIOUS KINDS OF ASSOCIATION
RULES

 Multilevel association rules involve
concepts at different levels of abstraction.

 Multidimensional association rules involve
more than one dimension or predicate (e.g.,
rules relating what a customer buys as well
as the customer’s age.)

 Quantitative association rules involve
numeric attributes that have an implicit
ordering among values (e.g., age).

MULTILEVEL ASSOCIATION RULES.

 Association rules generated from mining data
at multiple levels of abstraction are called
multiple-level or multilevel association
rules.

 Multilevel association rules can be mined
efficiently using concept hierarchies under a
support-confidence framework.

 Using uniform minimum support for all levels (referred to as
uniform support): The same minimum support threshold is used
when mining at each level of abstraction. For example, in Figure
Next Slide, a minimum support threshold of 5% is used
throughout (e.g., for mining from “computer” down to “laptop
computer”). Both “computer” and “laptop computer” are found to
be frequent, while “desktop computer” is not.

 When a uniform minimum support threshold is used, the search
procedure is simplified. The method is also simple in that users
are required to specify only one minimum support threshold.

 AnApriori-like optimization technique can be adopted, based on
the knowledge that an ancestor is a superset of its descendants:
The search avoids examining item sets containing any item
whose ancestors do not have minimum support.

 If the threshold is set too low, it may generate many
uninteresting associations occurring at high abstraction levels.
This provides the motivation for the following approach.

 Using reduced minimum support at lower levels (referred
to as reduced support): Each level of abstraction has its own
minimum support threshold. The deeper the level of
abstraction, the smaller the corresponding threshold is. For
example, in Figure 5.12, the minimum support thresholds for
levels 1 and 2 are 5% and 3%, respectively. In this way,
“computer,” “laptop computer,” and “desktop computer” are all
considered frequent.

 Using itemor group-based minimum support (referred to
as group-based support): Because users or experts often
have insight as to which groups are more important than
others, it is sometimes more desirable to set up user-specific,
item, or group based minimal support thresholds when mining
multilevel rules. For example, a user could set up the minimum
support thresholds based on product price, or on items of
interest, such as by setting particularly low support thresholds
for laptop computers and flash drives in order to pay particular
attention to the association patterns containing items in these
categories.

MINING MULTIDIMENSIONAL ASSOCIATION RULES
FROM RELATIONAL DATABASES AND DATA WAREHOUSES

 Association rules that imply a single predicate,
that is, the predicate buys. For instance, in
mining our AllElectronics database, we may
discover the Boolean association rule.

 This Rule refer as a singledimensional or
intradimensional association rule because it
contains a single distinct predicate (e.g.,
buys)with multiple occurrences (i.e., the
predicate occursmore than once within the rule).

 An association rules containing multiple predicates, such
as

 Association rules that involve two or more dimensions or
predicates can be referred to as multidimensional
association rules. It contains three predicates (age,
occupation, and buys), each of which occurs only once in
the rule. Hence, we say that it has no repeated predicates.
Multidimensional association rules with no repeated
predicates are called interdimensional association rules.

 We can also mine multidimensional association rules with
repeated predicates, which contain multiple occurrences
of some predicates. These rules are called hybrid-
dimensional association rules. An example of such a rule
is the following, where the predicate buys is repeated:

MINING QUANTITATIVE ASSOCIATION RULES

 Quantitative association rules are
multidimensional association rules in which the
numeric attributes are dynamically discretized
during the mining process so as to satisfy some
mining criteria, such as maximizing the
confidence or compactness of the rules mined.
In this section, we focus specifically on how to
mine quantitative association rules having two
quantitative attributes on the left-hand side of
the rule and one categorical attribute on the
right-hand side of the rule. That is,

 where Aquan1 and Aquan2 are tests on quantitative
attribute intervals (where the intervals are
dynamically determined), and Acat tests a categorical
attribute from the task-relevant data. Such rules have
been referred to as two-dimensional quantitative
association rules, because they contain two
quantitative dimensions. For instance, suppose you
are curious about the association relationship
between pairs of quantitative attributes, like
customer age and income, and the type of television
(such as high-definition TV, i.e., HDTV) that
customers like to buy. An example of such a 2-D
quantitative association rule is

