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LECTURE 15
TOPICS TO BE COVERED:

 Apriori Algorithm
 FP Growth



 Apriori employs an iterative approach known as a level-
wise search, where k-itemsets are used to explore 
(k+1)-itemsets

 Initially, the set of frequent 1-itemsets is found by 
scanning the database to accumulate the count for 
each item, and collecting those items that satisfy 
minimum support. 

 The resulting set is denoted L1.Next, L1 is used to find 
L2, the set of frequent 2-itemsets, which is used to find 
L3, and so on, until no more frequent k-itemsets can be 
found. The finding of each Lk requires one full scan of 
the database.

THE APRIORI ALGORITHM



 To improve the efficiency of the level-wise generation of 
frequent itemsets, an important property called the Apriori
property, presented below, is used to reduce the search 
space.

 Apriori property: All nonempty subsets of a frequent 
itemset must also be frequent.

 TheApriori property is based on the following observation. 
 By definition, if an itemset I does not satisfy the minimum 

support threshold, min sup, then I is not frequent; that is, 
P(I) < min sup. If an item A is added to the itemset I, then 
the resulting itemset (i.e., I  A) cannot occur more 
frequently than I. Therefore, I  A is not frequent either; 
that is, P(I  A) < min sup.

THE APRIORI PROPERTY



 “How is the Apriori property used in the 
algorithm?” To understand this, let us look at 
how Lk-1 is used to find Lk for k>=2. A two-step 
process is followed, consisting of join and prune 
actions.

 1. The join step: To find Lk, a set of candidate k-
itemsets is generated by joining Lk-1 with itself.

 2. The prune step: Ck is a superset of Lk, that 
is, its members may or may not be frequent, but 
all of the frequent k-itemsets are included inCk.

THE APRIORI PROPERTY



THE APRIORI ALGORITHM—AN EXAMPLE 

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2
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THE APRIORI ALGORITHM

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in 
Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;



IMPORTANT DETAILS OF APRIORI
 How to generate candidates?

 Step 1: self-joining Lk

 Step 2: pruning
 How to count supports of candidates?
 Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}
 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4={abcd}



HOW TO GENERATE CANDIDATES?

 Suppose the items in Lk-1 are listed in an order
 Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q
where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-

1

 Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck



It can Suffer from two nontrivial cost:
 It may need to generate a huge number of candidate sets. 
 It may need to repeatedly scan the database and check a 

large set of candidates by pattern matching. 
 An interesting method in this attempt is called frequent-

pattern growth, or simply FP-growth, which adopts a
divide-and-conquer strategy as follows. First, it compresses
the database representing frequent items into a frequent-
pattern tree, or FP-tree, which retains the itemset
association information. It then divides the compressed
database into a set of conditional databases (a special kind
of projected database), each associated with one frequent
item or “pattern fragment,” and mines each such database
separately.

FREQUENT PATTERN GROWTH



 Frequent pattern growth (FP-growth) is a 
method of mining frequent itemsets without 
candidate generation. It constructs a highly 
compact data structure (an FP-tree) to 
compress the original transaction database. 
Rather than employing the generate and test 
strategy of Apriori-like methods, it focuses on 
frequent pattern (fragment) growth, which 
avoids costly candidate generation, resulting 
in greater efficiency.

Frequent Pattern Growth



Example



EXAMPLE

 FP-growth (finding frequent itemsets without 
candidate generation). The first scan of the 
database is the same as Apriori, which 
derives the set of frequent items (1-itemsets) 
and their support counts (frequencies). Let 
the minimum support count be 2. The set of 
frequent items is sorted in the order of 
descending support count. This resulting set 
or list is denoted L. Thus, we have L ={{I2: 7}, 
{I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.



 An FP-tree is then constructed as follows. First, create the root of the 
tree, labeled with “null.” Scan database D a second time.

 The items in each transaction are processed in L order (i.e., sorted 
according to descending support count), and a branch is created for 
each transaction. 

 For example, the scan of the first transaction, “T100: I1, I2, I5,” which 
contains three items (I2, I1, I5 in L order), leads to the construction of the 
first branch of the tree with three nodes, (I2: 1), (I1:1), and (I5: 1), where 
I2 is linked as a child of the root, I1 is linked to I2, and I5 is linked to I1. 
The second transaction, T200, contains the items I2 and I4 in L order, 
which would result in a branch where I2 is linked to the root and I4 is 
linked to I2. However, this branch would share a common prefix, I2, with 
the existing path for T100. Therefore, we instead increment the count of 
the I2 node by 1, and create a new node, (I4: 1),which is linked as a 
child of (I2: 2). In general, when considering the branch to be added for 
a transaction, the count of each node along a common prefix is 
incremented by 1, and nodes for the items following the prefix are 
created and linked accordingly.
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MINING FREQUENT ITEMSETS USING VERTICAL 
DATA FORMAT

 Mining frequent itemsets using vertical data 
format (ECLAT = Equivalence Class 
Transformation) is a method that transforms 
a given data set of transactions in the 
horizontal data format of TID-itemset into the 
vertical data format of item-TID set. It mines 
the transformed data set by TID set 
intersections based on the Apriori property 
and additional optimization techniques, such 
as diffset.



Example



The vertical data format of the transaction data set D of 
given table
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CHALLENGES OF FREQUENT PATTERN MINING

 Challenges

 Multiple scans of transaction database

 Huge number of candidates

 Tedious workload of support counting for candidates

 Improving Apriori: general ideas

 Reduce passes of transaction database scans

 Shrink number of candidates

 Facilitate support counting of candidates



MINING VARIOUS KINDS OF ASSOCIATION 
RULES

 Multilevel association rules involve 
concepts at different levels of abstraction.

 Multidimensional association rules involve 
more than one dimension or predicate (e.g., 
rules relating what a customer buys as well 
as the customer’s age.) 

 Quantitative association rules involve 
numeric attributes that have an implicit 
ordering among values (e.g., age).



MULTILEVEL ASSOCIATION RULES.

 Association rules generated from mining data 
at multiple levels of abstraction are called 
multiple-level or multilevel association 
rules.

 Multilevel association rules can be mined 
efficiently using concept hierarchies under a 
support-confidence framework.



 Using uniform minimum support for all levels (referred to as 
uniform support): The same minimum support threshold is used 
when mining at each level of abstraction. For example, in Figure 
Next Slide, a minimum support threshold of 5% is used 
throughout (e.g., for mining from “computer” down to “laptop 
computer”). Both “computer” and “laptop computer” are found to 
be frequent, while “desktop computer” is not.

 When a uniform minimum support threshold is used, the search 
procedure is simplified. The method is also simple in that users 
are required to specify only one minimum support threshold.

 AnApriori-like optimization technique can be adopted, based on 
the knowledge that an ancestor is a superset of its descendants: 
The search avoids examining item sets containing any item 
whose ancestors do not have minimum support.







 If the threshold is set too low, it may generate many 
uninteresting associations occurring at high abstraction levels. 
This provides the motivation for the following approach.

 Using reduced minimum support at lower levels (referred 
to as reduced support): Each level of abstraction has its own 
minimum support threshold. The deeper the level of 
abstraction, the smaller the corresponding threshold is. For 
example, in Figure 5.12, the minimum support thresholds for 
levels 1 and 2 are 5% and 3%, respectively. In this way, 
“computer,” “laptop computer,” and “desktop computer” are all 
considered frequent.

 Using itemor group-based minimum support (referred to 
as group-based support): Because users or experts often 
have insight as to which groups are more important than 
others, it is sometimes more desirable to set up user-specific, 
item, or group based minimal support thresholds when mining 
multilevel rules. For example, a user could set up the minimum 
support thresholds based on product price, or on items of 
interest, such as by setting particularly low support thresholds 
for laptop computers and flash drives in order to pay particular 
attention to the association patterns containing items in these 
categories.



MINING MULTIDIMENSIONAL ASSOCIATION RULES
FROM RELATIONAL DATABASES AND DATA WAREHOUSES

 Association rules that imply a single predicate, 
that is, the predicate buys. For instance, in 
mining our AllElectronics database, we may 
discover the Boolean association rule.

 This Rule refer as a singledimensional or 
intradimensional association rule because it 
contains a single distinct predicate (e.g., 
buys)with multiple occurrences (i.e., the 
predicate occursmore than once within the rule).



 An association rules containing multiple predicates, such 
as 

 Association rules that involve two or more dimensions or 
predicates can be referred to as multidimensional 
association rules. It contains three predicates (age, 
occupation, and buys), each of which occurs only once in 
the rule. Hence, we say that it has no repeated predicates. 
Multidimensional association rules with no repeated 
predicates are called interdimensional association rules. 

 We can also mine multidimensional association rules with 
repeated predicates, which contain multiple occurrences 
of some predicates. These rules are called hybrid-
dimensional association rules. An example of such a rule 
is the following, where the predicate buys is repeated:



MINING QUANTITATIVE ASSOCIATION RULES

 Quantitative association rules are 
multidimensional  association rules in which the 
numeric attributes are dynamically discretized
during the mining process so as to satisfy some 
mining criteria, such as maximizing the 
confidence or compactness of the rules mined. 
In this section, we focus specifically on how to 
mine quantitative association rules having two 
quantitative attributes on the left-hand side of 
the rule and one categorical attribute on the 
right-hand side of the rule. That is,



 where Aquan1 and Aquan2 are tests on quantitative 
attribute intervals (where the intervals are 
dynamically determined), and Acat tests a categorical 
attribute from the task-relevant data. Such rules have 
been referred to as two-dimensional quantitative 
association rules, because they contain two 
quantitative dimensions. For instance, suppose you 
are curious about the association relationship 
between pairs of quantitative  attributes, like 
customer age and income, and the type of television 
(such as high-definition TV, i.e., HDTV) that 
customers like to buy. An example of such a 2-D 
quantitative association rule is


