
COURSE NAME:
DATA WAREHOUSING & DATA MINING



LECTURE 9
TOPICS TO BE COVERED:

 Complex aggregation at multiple granularities 
(contd)



COMPUTE AGGREGATES BY VISITING CUBE 
CELLS

 Compute aggregates by visiting (i.e., accessing
the values at) cube cells: The order in which cells
are visited can be optimized so as to minimize the
number of times that each cell must be revisited,
thereby reducing memory access and storage
costs. The trick is to exploit this ordering so that
partial aggregates can be computed
simultaneously, and any unnecessary revisiting of
cells is avoided.



BUC :COMPUTING ICEBERG CUBES FROM APEX CUBOID 
DOWNWARD.

 BUC is an algorithm for the computation of sparse and
iceberg cubes.

 BUC constructs the cube from the apex cuboid toward the
base cuboid. This allows BUC to share data partitioning
costs. This order of processing also allows BUC to prune
during construction, using the Apriori property.





STAR-CUBING: COMPUTING ICEBERG CUBES USING
A DYNAMIC STAR-TREE STRUCTURE

 It integrates top-down and bottom-up cube computation and explores
both multidimensional aggregation.

 It operates from a data structure called a star-tree, which performs
lossless data compression, thereby reducing the computation time and
memory requirements.

 The Star-Cubing algorithm explores both the bottom-up and top-down
computation models as follows: On the global computation order, it uses
the bottom-up model. However, it has a sublayer underneath based on
the top-down model, which explores the notion of shared dimensions



STAR-CUBING



STAR-TREE CONSTRUCTION

Star-tree construction. A base cuboid table is shown below. There are 5 
tuples and 4 dimensions. The cardinalities for dimensions A, B, C, D are 
2, 4, 4, 4,
respectively.



STAR-TREE CONSTRUCTION



STAR-CUBING

 Star-Cubing is generated Using the star-tree we start
process of aggregation by traversing in a bottom-up fashion.
Traversal is depth-first. The first stage (i.e., the processing
of the first branch of the tree) is shown in next slide. The
leftmost tree in the figure is the base star-tree. Each
attribute value is shown with its corresponding aggregate
value. In addition, subscripts by the nodes in the tree show
the order of traversal. The remaining four trees are BCD,
ACD/A,ABD/AB, ABC/ABC





PRECOMPUTING SHELL FRAGMENTS FOR FAST HIGH-
DIMENSIONAL
OLAP

 To illustrate the shell fragment approach, We first look at 
how to construct the inverted index for the given database.

 Construct the inverted index. For each attribute value in 
each dimension, list the tuple identifiers (TIDs) of all the 
tuples that have that value. For example, attribute value a2 
appears in tuples 4 and 5. The TIDlist for a2 then contains 
exactly two items, namely 4 and 5. The resulting inverted 
index table is shown in next slide . It retains all of the 
information of the original database. It uses exactly the 
same amount of memory as the original database





 Compute shell fragments. Suppose we are to 
compute the shell fragments of size 3. We first 
divide the five dimensions into two fragments, 
namely (A, B, C) and (D, E). For each fragment, we 
compute the full local data cube by intersecting the 
TIDlists in next slide in a top-down depth-first order 
in the cuboid lattice.

 To compute the cell(a1, b2, *), we intersect the 
tuple ID lists of a1 and b2 to obtain a new list of {2, 
3}





COMPLEX AGGREGATION AT MULTIPLE GRANULARITY:
MULTIFEATURE CUBES

 Data cubes facilitate the answering of data mining queries as they allow 
the computation of aggregate data at multiple levels of granularity.

 multifeature cubes, which compute complex queries involving multiple 
dependent aggregates at multiple granularity. These cubes are very 
useful in practice. Many complex data mining queries can be answered 
by multifeature cubes without any significant increase in computational 
cost, in comparison to cube computation for simple queries with 
standard data cubes.



SIMPLE DATA CUBE QUERY

 Query 1: A simple data cube query. Find the total sales in 2004, 
broken down by item, region, and month, with subtotals for each 
dimension.

 To answer Query 1, a data cube is constructed that aggregates the total 
sales at the following eight different levels of granularity: {(item, region, 
month), (item, region), (item, month), (month, region), (item), (month), 
(region), ()}, where () represents all.

 Query 1 uses a typical data cube like that introduced in the previous 
chapter. We call such a data cube a simple data cube because it does 
not involve any dependent aggregates.



COMPLEX QUERY

 Query 2: A complex query. Grouping by all subsets of fitem, region, 
monthg, find the maximum price in 2004 for each group and the total 
sales among all maximum price tuples.

 The specification of such a query using standard SQL can be long, 
repetitive, and difficult to optimize and maintain. Alternatively, Query 2 
can be specified concisely using an extended SQL syntax as follows:

select item, region, month, max(price), sum(R.sales)
from Purchases
where year = 2004
cube by item, region, month: R
such that R.price = max(price)



DATA GRANULARITY

 A data warehouse typically stores data in different levels
of granularity or summarization, depending on the data
requirements of the business. If an enterprise needs data
to assist strategic planning, then only highly summarized
data is required. The lower the level of granularity of data
required by the enterprise, the higher the number of
resources (specifically data storage) required to build the
data warehouse. The different levels of summarization in
order of increasing granularity are:

 Current operational data
 Historical operational data
 Aggregated data
 Metadata

19



DATA GRANULARITY

 Current and historical operational data are taken, unmodified, directly from 
operational systems. Historical data is operational level data no longer queried 
on a regular basis, and is often archived onto secondary storage.

 Aggregated, or summary, data is a filtered version of the current operational 
data. The design of the data warehouse affects how the current data is 
aggregated. Considerations for generating summary data include the period of 
time used to aggregate the data (for example, weekly, monthly, and so on), and 
the parts of the operational data to be summarized. For example, an 
organization can choose to aggregate at the part level the quantity of parts sold 
per sales representative per week.

 There may be several levels of summary data. It may be necessary to create 
summary level data based on an aggregated version of existing summary data. 
This can give an organization an even higher level view of the business. For 
example, an organization can choose to aggregate summary level data further 
by generating the quantity of parts sold per month.

 Metadata does not contain any operational data, but is used to document the 
way the data warehouse is constructed. Metadata can describe the structure of 
the data warehouse, source of the data, rules used to summarize the data at 
each level, and any transformations of the data from the operational systems.

20



21


