
COURSE NAME:
DATA WAREHOUSING & DATA MINING

LECTURE 8
TOPICS TO BE COVERED:

 Complex aggregation at multiple granularities

DATA GENERALIZATION

 Data generalization is a process that abstracts a large set
of task-relevant data in a database from a relatively low
conceptual level to higher conceptual levels.

 Data generalization approaches include data cube–based
data aggregation and attribute oriented induction.

 From a data analysis point of view, data generalization is a
form of descriptive data mining. Descriptive data mining
describes data in a concise and summarative manner and
presents interesting general properties of the data.

EFFICIENT METHODS FOR DATA CUBE
COMPUTATION
 A data cube consists of a lattice of cuboids. Each cuboid

corresponds to a different degree of summarization of
the given multidimensional data.

 Data cube computation is an essential task in data
warehouse implementation. The precomputation of all or
part of a data cube can greatly reduce the response time
and enhance the performance of on-line analytical
processing.

CUBE MATERIALIZATION

• Full Cube
• Iceberg Cube
• Closed Cube
• Shell Cube

FULL CUBE

 Full Cube:-all the cells of all of the cuboids for a
given data cube. Thus, precomputation of the full
cube can require huge and often excessive
amounts of memory.

 Full materialization refers to the computation of all
of the cuboids in a data cube lattice.

ICEBERG CUBE

• Iceberg Cube:-partially materialized cubes are
known as iceberg cubes. The minimum threshold is
called the minimum support threshold, or minimum
support(min sup)

• Partial materialization refers to the selective
computation of a subset of the cuboid cells in the
lattice. Iceberg cubes and shell fragments are
examples of partial materialization.

• An iceberg cube is a data cube that stores only
those cube cells whose aggregate value (e.g., count)
is above some minimum support threshold.

ICEBERG CUBE(EXAMPLE)

 An iceberg cube can be specified with an
SQL query, as shown in the following
example.

compute cube sales iceberg as
select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*) >= min sup

CLOSED CUBE

• To systematically compress a data cube, we need closed cell.
• A closed cube is a data cube consisting of only closed cells.
• A cell, c, is a closed cell if there exists no cell, d, such that d is a

specialization (descendant) of cell c (i.e, where d is obtained by
replacing a in c with a non- value), and d has the same measure
value as c.

• For example, the three cells derived above are the three closed
cells of the data cube for the data set: {(a1, a2, a3, - - - -, a100) :
10, (a1, a2, b3, - - - -, b100) : 10}.They form the lattice of a closed
cube as shown in Figure. Other nonclosed cells can be derived
from their corresponding closed cells in this lattice. For example,
“(a1, * ,*, - - - - , *) : 20” can be derived from “(a1, a2, - - - -,*) :
20” because the former is a generalized nonclosed cell of the
latter. Similarly, we have “(a1, a2, b3, *,- - - -,*) : 10”.

CLOSED CELL

SHELL CUBE

 Another strategy for partial materialization is to
precompute only the cuboids involving a small number
of dimensions, These cuboids form a cube shell for the
corresponding data cube

 For shell fragments of a data cube, only some cuboids
involving a small number of dimensions are computed.
Queries on additional ombinations of the dimensions
can be computed on the fly.

OPTIMIZATION TECHNIQUES FOR EFFICIENT
COMPUTATION OF DATA CUBES
 Following are general optimization techniques for the efficient computation of

data cubes.
1. Sorting, hashing, and grouping.
2. Simultaneous aggregation and caching intermediate

results.
3. Aggregation from the smallest child, when there exist

multiple child cuboids.
4. The Apriori pruning method can be explored to compute

iceberg cubes efficiently.

DATA CUBE COMPUTATION METHODS

1. MultiWay array aggregation for full data computation.
2. BUC :Computing iceberg cubes by exploring ordering and

sorting for efficient top-down computation.
3. Star-Cubing for integration of top-down and bottom-up

computation using a star-tree structure.
4. High-dimensional OLAP by precomputing only the

partitioned shell fragments.

MULTIWAY ARRAY AGGREGATION FOR
FULL DATA COMPUTATION
 The Multiway Array Aggregation (or simply MultiWay) method

computes a full data cube by using a multidimensional array as its basic
data structure. It is a typical MOLAP approach that uses direct array
addressing, where dimension values are accessed via the position or
index of their corresponding array locations. Hence, MultiWay cannot
perform any value-based reordering as an optimization technique.

 A different approach is developed for the array-based cube construction,
as follows:

 Partition the array into chunks
 Compute aggregates by visiting cube cells

PARTITION THE ARRAY INTO CHUNKS

 Partition the array into chunks: A chunk is a subcube that is small
enough to fit into the memory available for cube computation. Chunking
is a method for dividing an n-dimensional array into small n-dimensional
chunks, where each chunk is stored as an object on disk. The chunks
are compressed so as to remove wasted space resulting from empty
array cells (i.e., cells that do not contain any valid data, whose cell count
is zero). For instance, “chunkID + offset” can be used as a cell
addressing mechanism to compress a sparse array structure and when
searching for cells within a chunk. Such a compression technique is
powerful enough to handle sparse cubes, both on disk and in memory.

Multi-way Array Aggregation for Cube
Computation

17

MULTI-WAY ARRAY AGGREGATION FOR
CUBE COMPUTATION

 Partition arrays into chunks (a small subcube which fits in memory).
 Compressed sparse array addressing: (chunk_id, offset)
 Compute aggregates in “multiway” by visiting cube cells in the order

which minimizes the # of times to visit each cell, and reduces memory
access and storage cost.

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1c 0

b3

b2

b1

b0
a2 a3

C

B

44
28 56

4024 5236
20

60

18

MULTI-WAY ARRAY AGGREGATION
FOR CUBE COMPUTATION

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B

19

MULTI-WAY ARRAY AGGREGATION
FOR CUBE COMPUTATION

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B

