

Lecture-24

Local Optimization

Topics Covered
 Optimization of Basic Blocks
 DAG representation of Basic Block
 Construction of DAG

Optimization of Basic Blocks
 Many structure preserving transformations can be

implemented by construction of DAGs of basic blocks

4

DAG representation of Basic Block (BB)
 Leaves are labeled with unique identifier (var

name or const)
 Interior nodes are labeled by an operator symbol
 Nodes optionally have a list of labels (identifiers)
 Edges relates operands to the operator (interior

nodes are operator)
 Interior node represents computed value

 Identifier in the label are deemed to hold the value

5

Example: DAG for BB

6

t1 := 4 * i
t1*

i4

t1 := 4 * i
t3 := 4 * i
t2 := t1 + t3

*

i4

+

t1, t3

t2

if (i <= 20)goto L1

<=

i 20

(L1)

Construction of DAGs for BB
 I/p: Basic block, B
 O/p: A DAG for B containing the following

information:
1) A label for each node
2) For leaves the labels are ids or consts
3) For interior nodes the labels are operators
4) For each node a list of attached ids (possible empty

list, no consts)

7

Construction of DAGs for BB
 Data structure and functions:

 Node:
1) Label: label of the node
2) Left: pointer to the left child node
3) Right: pointer to the right child node
4) List: list of additional labels (empty for leaves)

 Node (id): returns the most recent node created for
id. Else return undef

 Create(id,l,r): create a node with label id with l as
left child and r as right child. l and r are optional
params.

8

Construction of DAGs for BB
 Method:

For each 3AC, A in B
A if of the following forms:

1. x := y op z
2. x := op y
3. x := y

1. if ((ny = node(y)) == undef)
ny = Create (y);
if (A == type 1)
and ((nz = node(z)) == undef)

nz = Create(z);

9

Construction of DAGs for BB
2. If (A == type 1)

Find a node labelled ‘op’ with left and right as ny and nz
respectively [determination of common sub-expression]

If (not found) n = Create (op, ny, nz);

If (A == type 2)
Find a node labelled ‘op’ with a single child as ny

If (not found) n = Create (op, ny);
If (A == type 3) n = Node (y);

3. Remove x from Node(x).list
Add x in n.list
Node(x) = n;

10

Example: DAG construction
from BB

t1 := 4 * i

11

*

i4

t1

Example: DAG construction
from BB

12

t1 := 4 * i

t2 := a [t1]

*

i4

t1

[]

a

t2

Example: DAG construction
from BB

13

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

*

i4

t1, t3

[]

a

t2

Example: DAG construction
from BB

14

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

*

i4

t1, t3

[]

a

t2
[]

b

t4

Example: DAG construction
from BB

15

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

t5 := t2 + t4

*

i4

t1, t3

[]

a

t2
[]

b

t4

t5+

Example: DAG construction
from BB

16

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

t5 := t2 + t4
i := t5

*

i4

t1, t3

[]

a

t2
[]

b

t4

t5,i+

DAG of a Basic Block
 Observations:

 A leaf node for the initial value of an id
 A node n for each statement s
 The children of node n are the last definition (prior to s)

of the operands of n

17

Optimization of Basic Blocks
 Common sub-expression elimination: by construction

of DAG
 Note: for common sub-expression elimination, we are

actually targeting for expressions that compute the same
value.

18

a := b + c

b := b – d

c := c + d

e := b + c

Common expressions
But do not generate the
same result

Optimization of Basic Blocks
 DAG representation identifies expressions that yield

the same result

19

a := b + c

b := b – d

c := c + d

e := b + c

b0 c0 d0

+

++ -a b c

e

Optimization of Basic Blocks
 Dead code elimination: Code generation from DAG

eliminates dead code.

20

a := b + c

b := a – d

d := a – d

c := d + c

b is not live

c

a := b + c

d := a - d

c := d + c

b0 c0

d0
+

-

+

a

b,d×

