

Lecture-24

Local Optimization

Topics Covered
 Optimization of Basic Blocks
 DAG representation of Basic Block
 Construction of DAG

Optimization of Basic Blocks
 Many structure preserving transformations can be

implemented by construction of DAGs of basic blocks

4

DAG representation of Basic Block (BB)
 Leaves are labeled with unique identifier (var

name or const)
 Interior nodes are labeled by an operator symbol
 Nodes optionally have a list of labels (identifiers)
 Edges relates operands to the operator (interior

nodes are operator)
 Interior node represents computed value

 Identifier in the label are deemed to hold the value

5

Example: DAG for BB

6

t1 := 4 * i
t1*

i4

t1 := 4 * i
t3 := 4 * i
t2 := t1 + t3

*

i4

+

t1, t3

t2

if (i <= 20)goto L1

<=

i 20

(L1)

Construction of DAGs for BB
 I/p: Basic block, B
 O/p: A DAG for B containing the following

information:
1) A label for each node
2) For leaves the labels are ids or consts
3) For interior nodes the labels are operators
4) For each node a list of attached ids (possible empty

list, no consts)

7

Construction of DAGs for BB
 Data structure and functions:

 Node:
1) Label: label of the node
2) Left: pointer to the left child node
3) Right: pointer to the right child node
4) List: list of additional labels (empty for leaves)

 Node (id): returns the most recent node created for
id. Else return undef

 Create(id,l,r): create a node with label id with l as
left child and r as right child. l and r are optional
params.

8

Construction of DAGs for BB
 Method:

For each 3AC, A in B
A if of the following forms:

1. x := y op z
2. x := op y
3. x := y

1. if ((ny = node(y)) == undef)
ny = Create (y);
if (A == type 1)
and ((nz = node(z)) == undef)

nz = Create(z);

9

Construction of DAGs for BB
2. If (A == type 1)

Find a node labelled ‘op’ with left and right as ny and nz
respectively [determination of common sub-expression]

If (not found) n = Create (op, ny, nz);

If (A == type 2)
Find a node labelled ‘op’ with a single child as ny

If (not found) n = Create (op, ny);
If (A == type 3) n = Node (y);

3. Remove x from Node(x).list
Add x in n.list
Node(x) = n;

10

Example: DAG construction
from BB

t1 := 4 * i

11

*

i4

t1

Example: DAG construction
from BB

12

t1 := 4 * i

t2 := a [t1]

*

i4

t1

[]

a

t2

Example: DAG construction
from BB

13

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

*

i4

t1, t3

[]

a

t2

Example: DAG construction
from BB

14

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

*

i4

t1, t3

[]

a

t2
[]

b

t4

Example: DAG construction
from BB

15

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

t5 := t2 + t4

*

i4

t1, t3

[]

a

t2
[]

b

t4

t5+

Example: DAG construction
from BB

16

t1 := 4 * i

t2 := a [t1]

t3 := 4 * i

t4 := b [t3]

t5 := t2 + t4
i := t5

*

i4

t1, t3

[]

a

t2
[]

b

t4

t5,i+

DAG of a Basic Block
 Observations:

 A leaf node for the initial value of an id
 A node n for each statement s
 The children of node n are the last definition (prior to s)

of the operands of n

17

Optimization of Basic Blocks
 Common sub-expression elimination: by construction

of DAG
 Note: for common sub-expression elimination, we are

actually targeting for expressions that compute the same
value.

18

a := b + c

b := b – d

c := c + d

e := b + c

Common expressions
But do not generate the
same result

Optimization of Basic Blocks
 DAG representation identifies expressions that yield

the same result

19

a := b + c

b := b – d

c := c + d

e := b + c

b0 c0 d0

+

++ -a b c

e

Optimization of Basic Blocks
 Dead code elimination: Code generation from DAG

eliminates dead code.

20

a := b + c

b := a – d

d := a – d

c := d + c

b is not live

c

a := b + c

d := a - d

c := d + c

b0 c0

d0
+

-

+

a

b,d×

