

Code Optimization

Lecture-26

Topics Covered

3

 Peephole Optimizations
 Control Flow Graph - CFG

Code Optimization
REQUIREMENTS:
 Meaning must be preserved (correctness)
 Speedup must occur on average.
 Work done must be worth the effort.
OPPORTUNITIES:
 Programmer (algorithm, directives)
 Intermediate code
 Target code

4

Code Optimization

5

Scanner
(lexical
analysis)

Parser
(syntax
analysis)

Code
Optimizer

Semantic
Analysis

(IC generator)

Code
Generator

Symbol
Table

Source
language

tokens Syntactic
structure

Syntactic/semantic
structure

Target
language

Levels
 Window – peephole optimization
 Basic block
 Procedural – global (control flow graph)
 Program level – intraprocedural (program dependence

graph)

6

Peephole Optimizations
 Constant Folding

x := 32 becomes x := 64
x := x + 32

 Unreachable Code
goto L2
x := x + 1 unneeded

 Flow of control optimizations
goto L1 becomes goto L2
…
L1: goto L2

7

Peephole Optimizations
 Algebraic Simplification

x := x + 0 unneeded
 Dead code

x := 32 where x not used after statement
y := x + y y := y + 32

 Reduction in strength
x := x * 2 x := x + x

8

Peephole Optimizations
 Local in nature
 Pattern driven
 Limited by the size of the window

9

Basic Block Level
 Common Subexpression elimination
 Constant Propagation
 Dead code elimination
 Plus many others such as copy propagation, value

numbering, partial redundancy elimination, …

10

Simple example: a[i+1] = b[i+1]
 t1 = i+1
 t2 = b[t1]
 t3 = i + 1
 a[t3] = t2

 t1 = i + 1
 t2 = b[t1]
 t3 = i + 1 no longer live
 a[t1] = t2

11

Common expression can be eliminated

 i = 4
 t1 = i+1
 t2 = b[t1]
 a[t1] = t2

 i = 4
 t1 = 5
 t2 = b[t1]
 a[t1] = t2

12

Now, suppose i is a constant:

• i = 4
• t1 = 5
• t2 = b[5]
• a[5] = t2

• i = 4
• t2 = b[5]
• a[5] = t2

Final Code:

Control Flow Graph - CFG
CFG = < V, E, Entry >, where

V = vertices or nodes, representing an instruction or
basic block (group of statements).

E = (V x V) edges, potential flow of control
Entry is an element of V, the unique program entry

Two sets used in algorithms:
 Succ(v) = {x in V| exists e in E, e = v x}
 Pred(v) = {x in V| exists e in E, e = x v}

13

1 2 3 4 5

Definitions
 point - any location between adjacent statements

and before and after a basic block.
 A path in a CFG from point p1 to pn is a sequence of

points such that j, 1 <= j < n, either pi is the point
immediately preceding a statement and pi+1 is the
point immediately following that statement in the
same block, or pi is the end of some block and pi+1
is the start of a successor block.

14

CFG

15

c = a + b
d = a * c
i = 1

f[i] = a + b
c = c * 2
if c > d

g = a * c g = d * d

i = i + 1
if i > 10

points

path

Optimizations on CFG
 Must take control flow into account

 Common Sub-expression Elimination
 Constant Propagation
 Dead Code Elimination
 Partial redundancy Elimination
 …

 Applying one optimization may create opportunities
for other optimizations.

16

Redundant Expressions
An expression x op y is redundant at a point p if it has

already been computed at some point(s) and no
intervening operations redefine x or y.

m = 2*y*z t0 = 2*y t0 = 2*y
m = t0*z m = t0*z

n = 3*y*z t1 = 3*y t1 = 3*y
n = t1*z n = t1*z

o = 2*y–z t2 = 2*y
o = t2-z o = t0-z

17

redundant

Redundant Expressions

18

c = a + b
d = a * c
i = 1

f[i] = a + b
c = c * 2
if c > d

g = a * c g = d * d

i = i + 1
if i > 10

Candidates:
a + b
a * c
d * d
c * 2
i + 1

Definition site

Since a + b is
available here,
 redundant!

Redundant Expressions

19

c = a + b
d = a * c
i = 1

f[i] = a + b
c = c * 2
if c > d

g = a * c g = d * d

i = i + 1
if i > 10

Candidates:
a + b
a * c
d * d
c * 2
i + 1

Definition site

Kill site

Not available
 Not redundant

Redundant Expressions
 An expression e is defined at some point p in the

CFG if its value is computed at p. (definition site)
 An expression e is killed at point p in the CFG if

one or more of its operands is defined at p. (kill
site)

 An expression is available at point p in a CFG if
every path leading to p contains a prior definition
of e and e is not killed between that definition and
p.

20

Removing Redundant Expressions

21

t1 = a + b
c = t1
d = a * c
i = 1

f[i] = t1
c = c * 2
if c > d

g = a * c g = d*d

i = i + 1
if i > 10

Candidates:
a + b
a * c
d * d
c * 2
i + 1

Constant Propagation

22

b = 5
c = 4*b
c > b

d = b + 2

e = a + b

b = 5
c = 20
c > 5

d = 7

e = a + 5e = a + b

tf tf

b = 5
c = 20
20 > 5

d = 7

e = a + 5

tf

Constant Propagation

23

b = 5
c = 20
20 > 5

d = 7

e = a + 5

tf

b = 5
c = 20
d = 7
e = a + 5

Copy Propagation

24

b = a
c = 4*b
c > b

d = b + 2

e = a + b

b = a
c = 4*a
c > a

d = a + 2

e = a + ae = a + b

Simple Loop Optimizations: Code Motion
while (i <= limit - 2)

t := limit - 2
while (i <= t)

L1:
t1 = limit – 2
if (i > t1) goto L2
body of loop
goto L1

L2:

t1 = limit – 2
L1:

if (i > t1) goto L2
body of loop
goto L1

L2:

25

Simple Loop Optimizations: Strength
Reduction
 Induction Variables control loop iterations

26

j = j – 1
t4 = 4 * j
t5 = a[t4]
if t5 > v

j = j – 1
t4 = t4 - 4
t5 = a[t4]
if t5 > v

t4 = 4*j

Simple Loop Optimizations
 Loop transformations are often used to expose

other optimization opportunities:
 Normalization
 Loop Interchange
 Loop Fusion
 Loop Reversal
 …

27

Consider Matrix Multiplication
for i = 1 to n do

for j = 1 to n do
for k = 1 to n do

C[i,j] = C[i,j] + A[i,k] + B[k,j]
end

end
end

28

= +
i i

j j

k
k

C BA

Memory Usage
 For A: Elements are accessed across rows, spatial locality is

exploited for cache (assuming row major storage)
 For B: Elements are accessed along columns, unless cache

can hold all of B, cache will have problems.
 For C: Single element computed per loop – use register to

hold

29

= +
i i

j j

k
k

C BA

Matrix Multiplication Version 2
for i = 1 to n do

for k = 1 to n do
for j = 1 to n do

C[i,j] = C[i,j] + A[i,k] + B[k,j]
end

end
end

30

= +
i i

j jk

C BA

loop interchange

k

Memory Usage
 For A: Single element loaded for loop body
 For B: Elements are accessed along rows to exploit

spatial locality.
 For C: Extra loading/storing, but across rows

31

= +
i i

j jk

C BA
k

Simple Loop Optimizations
 How to determine safety?

 Does the new multiply give the same answer?
 Can be reversed??
for (I=1 to N) a[I] = a[I+1] – can this loop be safely

reversed?

32

Data Dependencies
 Flow Dependencies - write/read

x := 4;
y := x + 1

 Output Dependencies - write/write
x := 4;
x := y + 1;

 Antidependencies - read/write
y := x + 1;
x := 4;

33

34

x := 4
y := 6
p := x + 2
z := y + p
x := z
y := p

x := 4 y := 6

p := x + 2

z := y + p

y := p x := zFlow
Output
Anti

Global Data Flow Analysis
Collecting information about the way data is used in

a program.
 Takes control flow into account
 HL control constructs

 Simpler – syntax driven
 Useful for data flow analysis of source code

 General control constructs – arbitrary branching
Information needed for optimizations such as:

constant propagation, common sub-expressions,
partial redundancy elimination …

35

Dataflow Analysis: Iterative
Techniques
 First, compute local (block level) information.
 Iterate until no changes
while change do

change = false
for each basic block

apply equations updating IN and OUT
if either IN or OUT changes, set change to

true
end

36

Live Variable Analysis
A variable x is live at a point p if there

is some path from p where x is used
before it is defined.

Want to determine for some variable x
and point p whether the value of x
could be used along some path
starting at p.

 Information flows backwards
 May – ‘along some path starting at p’

37

is x live
here?

Global Live Variable Analysis
Want to determine for some variable x and point p whether

the value of x could be used along some path starting at p.

 DEF[B] - set of variables assigned values in B prior to any
use of that variable

 USE[B] - set of variables used in B prior to any definition of
that variable

 OUT[B] - variables live immediately after the block
OUT[B] - IN[S] for all S in succ(B)

 IN[B] - variables live immediately before the block
IN[B] = USE[B] + (OUT[B] - DEF[B])

38

39

d1: a = 1
d2: b = 2

d3: c = a + b
d4: d = c - a

d8: b = a + b
d9: e = c - 1

d10: a = b * d
d22: b = a - d

d5: d = b * d

d6: d = a + b
d7: e = e + 1

B1

B2

B3

B4

B5

B6

DEF=a,b
USE =

DEF=c,d
USE = a,b

DEF=
USE = b,d

DEF=d
USE = a,b,e

DEF= e
USE = a,b,c

DEF= a
USE = b,d

Global Live Variable Analysis
Want to determine for some variable x and point p whether

the value of x could be used along some path starting at p.

 DEF[B] - set of variables assigned values in B prior to any
use of that variable

 USE[B] - set of variables used in B prior to any definition of
that variable

 OUT[B] - variables live immediately after the block
OUT[B] - IN[S] for all S in succ(B)

 IN[B] - variables live immediately before the block
IN[B] = USE[B] (OUT[B] - DEF[B])

40

IN OUT IN OUT IN OUT

B1 a,b a,b e a,b,e

B2 a,b a,b,c,d a,b,e a,b,c,d ,e a,b,e a,b,c,d,e

B3 a,b,c,d e a,b,c,e a,b,c,d,e a,b,c,d,e a,b,c,d,e a,b,c,d,e

B4 a,b,c,e a,b,c,d,e a,b,c,e a,b,c,d,e a,b,c,e a,b,c,d,e
B5 a,b,c,d a,b,d a,b,c,d a,b,d,e a,b,c,d a,b,d,e
B6 b,d b,d b,d

Block DEF USE
B1 {a,b} { }
B2 {c,d} {a,b}
B3 { } {b,d}
B4 {d} {a,b,e}
B5 {e} {a,b,c}
B6 {a} {b,d}

41

OUT[B] = IN[S] for all S in succ(B)
IN[B] = USE[B] + (OUT[B] - DEF[B])

42
{ }

{b,d}

{e}

{a,b,e}

{a,b,e}

{a,b,c,d,e}
{a,b,c,d,e}

{a,b,c,d,e}
{a,b,c,d}

{a,b,d,e}

{a,b,c,e}

{a,b,c,d,e}

Dataflow Analysis Problem #2: Reachability
 A definition of a variable x is a statement that may

assign a value to x.
 A definition may reach a program point p if there

exists some path from the point immediately following
the definition to p such that the assignment is not
killed along that path.

 Concept: relationship between definitions and uses

43

What blocks do definitions d2 and d4
reach?

44

d1 i = m – 1
d2 j = n

d3 i = i + 1

d4 j = j - 1

B1

B2

B3

B4 B5

d2
d4

Reachability Analysis: Unstructured
Input
1. Compute GEN and KILL at block—level
2. Compute IN[B] and OUT[B] for B

IN[B] = U OUT[P] where P is a predecessor of B
OUT[B] = GEN[B] U (IN[B] - KILL[B])

3. Repeat step 2 until there are no changes to OUT sets

45

Reachability Analysis: Step 1
For each block, compute local (block level) information

= GEN/KILL sets
 GEN[B] = set of definitions generated by B
 KILL[B] = set of definitions that can not reach the end of

B
This information does not take control flow between

blocks into account.

46

Reasoning about Basic Blocks
Effect of single statement: a = b + c
 Uses variables {b,c}
 Kills all definitions of {a}
 Generates new definition (i.e. assigns a value)

of {a}

Local Analysis:
 Analyze the effect of each instruction
 Compose these effects to derive information about

the entire block

47

Example

48

d1 i = m – 1
d2 j = n
d3 a = u1

B1

B2

B3

B4

d4 i = i + 1
d5 j = j - 1

d6 a = u2

d7 i = u2

Gen = 4,5
Kill = 1,2,7

Gen = 1,2,3
Kill = 4,5,6,7

Gen = 7
Kill = 1,4Gen = 6

Kill = 3

Reachability Analysis: Step 2
Compute IN/OUT for each block in a forward

direction. Start with IN[B] =
 IN[B] = set of defns reaching the start of B

= (out[P]) for all predecessor blocks in the CFG
 OUT[B] = set of defns reaching the end of B

= GEN[B] (IN[B] – KILL[B])

Keep computing IN/OUT sets until a fixed point is
reached.

49

Reaching Definitions Algorithm
 Input: Flow graph with GEN and KILL for each block
 Output: in[B] and out[B] for each block.
For each block B do out[B] = gen[B], (true if in[B] = emptyset)
change := true;
while change do begin

change := false;
for each block B do begin

in[B] := U out[P], where P is a predecessor of B;
oldout = out[B];
out[B] := gen[B] U (in[B] - kill [B])
if out[B] != oldout then change := true;

end
end

50

IN OUT

B1 1,2,3

B2 4,5

B3 6

B4 7

51

IN[B] = (out[P]) for all predecessor
blocks in the CFG
OUT[B] = GEN[B] (IN[B] – KILL[B])

d1 i = m – 1
d2 j = n
d3 a = u1

B1

B2

B3

B4

d4 i = i + 1
d5 j = j - 1

d6 a = u2

d7 i = u2

Gen = 4,5
Kill = 1,2,7

Gen = 1,2,3
Kill = 4,5,6,7

Gen = 7
Kill = 1,4

Gen = 6
Kill = 3

I
N

OU
T

IN OUT

B
1

 1,2,3 1,2,3

B
2

 4,5 OUT[1]+OUT[
4]
= 1,2,3,7

4,5 + (1,2,3,7
– 1,2,7)
= 3,4,5

B
3

 6 OUT[2] = 3,4,5 6 + (3,4,5 – 3)
= 4,5,6

B
4

 7 OUT[2]+OUT[
3]
= 3,4,5,6

7 + (3,4,5,6 – 1,4) =
3,5,6,7

52

IN[B] = (out[P]) for all predecessor
blocks in the CFG
OUT[B] = GEN[B] + (IN[B] – KILL[B])

IN OUT IN OUT IN OUT

B1 1,2,3 1,2,3 1,2,3

B2 4,5 1,2,3,7 3,4,5 OUT[1] + OUT[4] =
1,2,3,5,6,7

4,5 + (1,2,3,5,6,7-1,2,7) =
3,4,5,6

B3 6 3,4,5 4,5,6 OUT[2] = 3,4,5,6 6 + (3,4,5,6 – 3)
= 4,5,6

B4 7 3,4,5,6 3,5,6,7 OUT[2] + OUT[3] =
3,4,5,6

7+(3,4,5,6 – 1,4)
= 3,5,6,7

53

IN[B] = (out[P]) for all predecessor
blocks in the CFG
OUT[B] = GEN[B] + (IN[B] – KILL[B])

Forward vs. Backward
Forward flow vs. Backward flow

Forward: Compute OUT for given IN,GEN,KILL
 Information propagates from the predecessors of a

vertex.
 Examples: Reachability, available expressions, constant

propagation

Backward: Compute IN for given OUT,GEN,KILL
 Information propagates from the successors of a vertex.
 Example: Live variable Analysis

54

Forward vs. Backward Equations
Forward vs. backward

 Forward:
 IN[B] - process OUT[P] for all P in

predecessors(B)
 OUT[B] = local U (IN[B] – local)

 Backward:
 OUT[B] - process IN[S] for all S in

successor(B)
 IN[B] = local U (OUT[B] – local)

55

May vs. Must
May vs. Must

Must – true on all paths
Ex: constant propagation – variable must provably hold

appropriate constant on all paths in order to do a substitution

May – true on some path
Ex: Live variable analysis – a variable is live if it could be used on

some path; reachability – a definition reaches a point if it can
reach it on some path

56

May vs. Must Equations
 May vs. Must

 May – IN[B] = (out[P]) for all P in
pred(B)

 Must – IN[B] = (out[P]) for all P in
pred(B)

57

 Reachability
 IN[B] = (out[P]) for all P in pred(B)
 OUT[B] = GEN[B] + (IN[B] – KILL[B])

 Live Variable Analysis
 OUT[B] = (IN[S]) for all S in succ(B)
 IN[B] = USE[B] (OUT[B] - DEF[B])

 Constant Propagation
 IN[B] = (out[P]) for all P in pred(B)
 OUT[B] = DEF_CONST[B] (IN[B] – KILL_CONST[B])

58

Discussion
 Why does this work?

 Finite set – can be represented as bit vectors
 Theory of lattices

 Is this guaranteed to terminate?
 Sets only grow and since finite in size …

 Can we find ways to reduce the number of iterations?

59

Choosing visit order for Dataflow Analysis
In forward flow analysis situations, if we visit the blocks

in depth first order, we can reduce the number of
iterations.

Suppose definition d follows block path 3 5 19 35
 16 23 45 4 10 17 where the block
numbering corresponds to the preorder depth-first
numbering.

Then we can compute the reach of this definition in 3
iterations of our algorithm.

3 5 19 35 16 23 45 4 10 17

60

