

Lecture-23

Introduction to Code Motion

Topics Covered
 Code Motion
 Dead Code Elimination

3

Code Motion
 Moving code from one part of the program to other

without modifying the algorithm
 Reduce size of the program
 Reduce execution frequency of the code subjected to

movement

4

Code Motion
1. Code Space reduction: Similar to common sub-

expression elimination but with the objective to
reduce code size.

Example: Code hoisting
temp : = x ** 2

if (a< b) then if (a< b) then
z := x ** 2 z := temp

else else
y := x ** 2 + 10 y := temp + 10

5

“x ** 2“ is computed once in both cases, but the
code size in the second case reduces.

Code Motion
2. Execution frequency reduction: reduce execution

frequency of partially available expressions
(expressions available atleast in one path)

Example:
if (a<b) then if (a<b) then

z = x * 2 temp = x * 2
z = temp

else else
y = 10 y = 10

temp = x * 2
g = x * 2 g = temp;

6

Code Motion
 Move expression out of a loop if the evaluation does

not change inside the loop.
Example:

while (i < (max-2)) …
Equivalent to:

t := max - 2

while (i < t) …

7

Code Motion
 Safety of Code movement

Movement of an expression e from a basic block bi to
another block bj, is safe if it does not introduce any new
occurrence of e along any path.

Example: Unsafe code movement
temp = x * 2

if (a<b) then if (a<b) then
z = x * 2 z = temp

else else
y = 10 y = 10

8

Strength Reduction
 Replacement of an operator with a less costly one.

Example:
temp = 5;

for i=1 to 10 do for i=1 to 10 do
… …
x = i * 5 x = temp
… …

temp = temp + 5
end end

• Typical cases of strength reduction occurs in address
calculation of array references.

• Applies to integer expressions involving induction variables
(loop optimization)

9

Dead Code Elimination
 Dead Code are portion of the program which will

not be executed in any path of the program.
 Can be removed

 Examples:
 No control flows into a basic block
 A variable is dead at a point -> its value is not used

anywhere in the program
 An assignment is dead -> assignment assigns a value to a

dead variable

10

Dead Code Elimination

11

x = y - 5
“x” is dead variable

Definition of “x” is dead

• Beware of side effects in code during
dead code elimination

Dead Code Elimination

12

• Examples:

DEBUG:=0
if (DEBUG) print Can be

eliminated

Copy Propagation
 What does it mean?

 Given an assignment x = y, replace later uses of x with
uses of y, provided there are no intervening
assignments to x or y.

 When is it performed?
 At any level, but usually early in the optimization

process.
 What is the result?

 Smaller code

13

Copy Propagation
 f := g are called copy statements or copies
 Use of g for f, whenever possible after copy

statement

Example:
x[i] = a; x[i] = a;
sum = x[i] + a; sum = a + a;

 May not appear to be code improvement, but
opens up scope for other optimizations.

14

Local Copy Propagation
 Local copy propagation

Performed within basic blocks
Algorithm sketch:
 traverse BB from top to bottom
 maintain table of copies encountered so far
 modify applicable instructions as you go

15

Loop Optimization
 Decrease the number if instruction in the inner loop
 Even if we increase no of instructions in the outer loop
 Techniques:

 Code motion
 Induction variable elimination
 Strength reduction

16

Peephole Optimization
Pass over generated code to examine a

few instructions, typically 2 to 4
 Redundant instruction Elimination: Use algebraic

identities

 Flow of control optimization: removal of redundant
jumps

 Use of machine idioms

17

Redundant instruction elimination
 Redundant load/store: see if an obvious replacement is possible

MOV R0, a
MOV a, R0

Can eliminate the second instruction without needing any global
knowledge of a

 Unreachable code: identify code which will never be executed:
#define DEBUG 0
if(DEBUG) { if (0 != 1) goto L2

print debugging info print debugging info
}

L2:

18

Algebraic identities
 Worth recognizing single instructions with a constant operand:

A * 1 = A

A * 0 = 0

A / 1 = A

A * 2 = A + A

More delicate with floating-point

 Strength reduction:
A ^ 2 = A * A

19

