


Lecture-23

Introduction to Code Motion



Topics Covered
 Code Motion
 Dead Code Elimination
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Code Motion
 Moving code from one part of the program to other 

without modifying the algorithm
 Reduce size of the program
 Reduce execution frequency of the code subjected to 

movement
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Code Motion
1. Code Space reduction: Similar to common sub-

expression elimination but with the objective to
reduce code size.

Example: Code hoisting
temp : = x ** 2

if (a< b) then if (a< b) then
z := x ** 2 z := temp

else else
y := x ** 2 + 10 y := temp + 10
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“x ** 2“ is computed once in both cases, but the
code size in the second case reduces.



Code Motion
2. Execution frequency reduction: reduce execution

frequency of partially available expressions
(expressions available atleast in one path)

Example:
if (a<b) then if (a<b) then

z = x * 2 temp = x * 2
z = temp

else else
y = 10 y = 10

temp = x * 2
g = x * 2 g = temp;
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Code Motion
 Move expression out of a loop if the evaluation does 

not change inside the loop.
Example:

while ( i < (max-2) ) … 
Equivalent to:

t :=  max - 2

while ( i < t ) …
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Code Motion
 Safety of Code movement

Movement of an expression e from a basic block bi to 
another block bj, is safe if it does not introduce any new 
occurrence of e along any path.

Example: Unsafe code movement
temp = x * 2

if (a<b) then if (a<b) then
z = x * 2 z = temp

else else
y = 10 y = 10
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Strength Reduction
 Replacement of an operator with a less costly one.

Example:
temp = 5;

for i=1 to 10 do for i=1 to 10 do
… …
x = i * 5 x = temp
… …

temp = temp + 5
end end

• Typical cases of strength reduction occurs in address 
calculation of array references.

• Applies to integer expressions involving induction variables 
(loop optimization)
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Dead Code Elimination
 Dead Code are portion of the program which will 

not be executed in any path of the program.
 Can be removed

 Examples:
 No control flows into a basic block
 A variable is dead at a point -> its value is not used 

anywhere in the program
 An assignment is dead -> assignment assigns a value to a 

dead variable
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Dead Code Elimination
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x = y - 5
“x” is dead variable

Definition of “x” is dead

• Beware of side effects in code during 
dead code elimination



Dead Code Elimination
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• Examples:

DEBUG:=0
if (DEBUG) print Can be

eliminated



Copy Propagation
 What does it mean?

 Given an assignment x = y, replace later uses of x with 
uses of y, provided there are no intervening 
assignments to x or y.

 When is it performed?
 At any level, but usually early in the optimization 

process. 
 What is the result? 

 Smaller code
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Copy Propagation
 f := g are called copy statements or copies
 Use of g for f, whenever possible after copy 

statement

Example:
x[i] = a; x[i] = a;
sum = x[i] + a; sum = a + a;

 May not appear to be code improvement, but 
opens up scope for other optimizations.
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Local Copy Propagation
 Local copy propagation

Performed within basic blocks
Algorithm sketch:
 traverse BB from top to bottom
 maintain table of copies encountered so far
 modify applicable instructions as you go
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Loop Optimization
 Decrease the number if instruction in the inner loop
 Even if we increase no of instructions in the outer loop
 Techniques:

 Code motion
 Induction variable elimination
 Strength reduction
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Peephole Optimization
Pass over generated code to examine  a 

few instructions, typically 2 to 4
 Redundant instruction Elimination: Use algebraic 

identities

 Flow of control optimization: removal of redundant 
jumps

 Use of machine idioms
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Redundant instruction elimination
 Redundant load/store: see if an obvious replacement is possible

MOV  R0, a
MOV a, R0

Can eliminate the second instruction without needing any global 
knowledge of a

 Unreachable code: identify code which will never be executed:
#define DEBUG 0
if( DEBUG) { if (0 != 1) goto L2

print debugging info print debugging info
}

L2:
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Algebraic identities
 Worth recognizing single instructions with a constant operand:

A * 1 = A

A * 0 = 0

A / 1 = A

A * 2 = A + A

More delicate with floating-point

 Strength reduction:
A ^ 2 = A * A
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