

Lecture-22

Introduction to Optimization

Topics Covered
 Introduction to Optimization
 Classifications of Optimization techniques
 Compile-Time Evaluation

Introduction

 Criterion of code optimization
 Must preserve the semantic equivalence of the

programs
 The algorithm should not be modified
 Transformation, on average should speed up the

execution of the program
 Worth the effort: Intellectual and compilation

effort spend on insignificant improvement.
Transformations are simple enough to have a

good effect 4

Introduction

 Optimization can be done in almost all phases of
compilation.

5

Front
end

Code
generator

Source
code

Inter.
code

target
code

Profile and
optimize

(user)

Loop, proc
calls, addr
calculation

improvement
(compiler)

Reg usage,
instruction

choice,
peephole opt
(compiler)

Introduction

 Organization of an optimizing compiler

6

Control
flow

analysis

Data
flow

analysis
Transformation

Code
optimizer

Classifications of Optimization
techniques

 Peephole optimization
 Local optimizations
 Global Optimizations
 Inter-procedural
 Intra-procedural

 Loop optimization

7

Factors influencing Optimization
 The target machine: machine dependent factors

can be parameterized to compiler for fine tuning
 Architecture of Target CPU:

 Number of CPU registers
 RISC vs CISC
 Pipeline Architecture
 Number of functional units

 Machine Architecture
 Cache Size and type
 Cache/Memory transfer rate

8

Themes behind Optimization
Techniques

 Avoid redundancy: something already computed
need not be computed again

 Smaller code: less work for CPU, cache, and memory!
 Less jumps: jumps interfere with code pre-fetch
 Code locality: codes executed close together in time is

generated close together in memory – increase locality
of reference

 Extract more information about code: More info –
better code generation

9

Redundancy elimination
 Redundancy elimination = determining that two

computations are equivalent and eliminating one.
 There are several types of redundancy elimination:

 Value numbering
 Associates symbolic values to computations and

identifies expressions that have the same value
 Common subexpression elimination
 Identifies expressions that have operands with the same

name
 Constant/Copy propagation
 Identifies variables that have constant/copy values and

uses the constants/copies in place of the variables.
 Partial redundancy elimination
 Inserts computations in paths to convert partial

redundancy to full redundancy.
10

Optimizing Transformations

 Compile time evaluation
 Common sub-expression elimination
 Code motion
 Strength Reduction
 Dead code elimination
 Copy propagation
 Loop optimization

 Induction variables and strength reduction

11

Compile-Time Evaluation
 Expressions whose values can be pre-computed at

the compilation time
 Two ways:
 Constant folding
 Constant propagation

12

Compile-Time Evaluation
 Constant folding: Evaluation of an expression with

constant operands to replace the expression with
single value

 Example:
area := (22.0/7.0) * r ** 2

area := 3.14286 * r ** 2

13

Compile-Time Evaluation
 Constant Propagation: Replace a variable with

constant which has been assigned to it earlier.
 Example:

pi := 3.14286

area = pi * r ** 2

area = 3.14286 * r ** 2

14

Constant Propagation
 What does it mean?

 Given an assignment x = c, where c is a constant,
replace later uses of x with uses of c, provided there are
no intervening assignments to x.
 Similar to copy propagation
 Extra feature: It can analyze constant-value

conditionals to determine whether a branch should
be executed or not.

 When is it performed?
 Early in the optimization process.

 What is the result?
 Smaller code
 Fewer registers

15

Common Sub-expression Evaluation
 Identify common sub-expression present in

different expression, compute once, and use the
result in all the places.
 The definition of the variables involved should not

change

Example:
a := b * c temp := b * c
… a := temp
… …
x := b * c + 5 x := temp + 5

16

Common Subexpression Elimination
 Local common subexpression elimination

 Performed within basic blocks
 Algorithm sketch:
 Traverse BB from top to bottom
 Maintain table of expressions evaluated so far

 if any operand of the expression is redefined, remove it
from the table

 Modify applicable instructions as you go
 generate temporary variable, store the expression in it

and use the variable next time the expression is
encountered.

17

x = a + b
...
y = a + b

t = a + b
x = t
...
y = t

Common Subexpression Elimination

18

c = a + b
d = m * n
e = b + d
f = a + b
g = - b
h = b + a
a = j + a
k = m * n
j = b + d
a = - b
if m * n go to L

t1 = a + b
c = t1
t2 = m * n
d = t2
t3 = b + d
e = t3
f = t1
g = -b
h = t1 /* commutative */
a = j + a
k = t2
j = t3
a = -b
if t2 go to L

the table contains quintuples:
(pos, opd1, opr, opd2, tmp)

Common Subexpression Elimination

 Global common subexpression elimination
 Performed on flow graph
 Requires available expression information
 In addition to finding what expressions are available

at the endpoints of basic blocks, we need to know
where each of those expressions was most recently
evaluated (which block and which position within
that block).

19

Common Sub-expression Evaluation

20

z : = a + b + 10

a : = b

1

2 3

4

“a + b” is not a
common sub-
expression in 1 and 4

None of the variable involved should be modified in any path

x : = a + b

