Compiler Design

Lecture-21

Type Checking

Topics Covered

- Type Checking
- Type Expressions
- Equivalence of Type Expressions
- Overloading Functions \& Operators

Static Checking

- Static (Semantic) Checks
- Type checks: operator applied to incompatible operands?
- Flow of controlchecks: Greak (outside while?)
- Ulniqueness checks: Cabels in case statements
- Name related checks: same name?

Type Checking

- Problem: Verify that a type of a construct matches that expected by its context.
- Examples:
- mod requires integer operands (PASCAL)
- * (dereferencing) - applied to a pointer
- a[i]-indexing applied to an array
- $f(a 1, a 2, . ., a n)$-function applied to correct arguments.
- Informationgathered by a type checker:
- Needed during code generation.

Type Systems

- A collection of rules for assigning type expressions to the various parts of a program.
- Based on: Syntactic constructs, notion of a type.
- Example: If 6oth operators of "+", "-", "*" are of type integer then so is the result.
- Type Checker: An implementation of a type system.
- Syntax Directed.
- Sound Type System: eliminates the need for checking type errors during run time.

Type Expressions

- Implic it Assumptions:
- Eacf program fas a type \longrightarrow Expressions
- Types have a structure

Basic	Types	Type Constructors
Boolean	Character	Arrays
Real	Integer	Records
Enumerations	Sub-ranges	Sets
Void	Error	Pointers
Variables	Names	Functions

Type Expressions Grammar

$$
\left.\begin{array}{rl}
\text { Type } \rightarrow & \text { int } \mid \text { float } \mid \text { char } \mid \ldots \\
& \mid \text { void } \\
& \mid \text { error } \\
& \mid \text { name } \\
& \mid \text { variable } \\
& \mid \text { array }(\text { size }, \mathcal{T} y p e) \\
& \mid \operatorname{record}\left((\text { name }, \mathcal{T} y p e)^{*}\right) \\
& \mid \text { pointer }(\mathcal{T} y p e) \\
& \mid \text { tuple }\left((\mathcal{T} y p e)^{*}\right) \\
& \mid \text { arrow }(\mathcal{T} y p e, \mathcal{T} y p e)
\end{array}\right\} \text { Basic Iypes }
$$

A Simple Typed Language

Program $->$ Declaration; Statement
Declaration -> Declaration; Declaration

$$
\mid i d: \text { Type }
$$

S tatement $\rightarrow \mathcal{S}$ tatement; \mathcal{S} tatement

$$
\begin{aligned}
& \text { id := Expression } \\
& \text { |if Expression then S tatement } \\
& \text { while Expressiondo Statement }
\end{aligned}
$$

Expression ->literal|num|id

$$
\begin{aligned}
& \mid E x p r e s s i o n ~ m o d \\
& \mid E(E x p r e s s i o n \\
& \mid \mathcal{E}[\mathcal{E} \uparrow \mid \mathcal{E}(\mathcal{E})
\end{aligned}
$$

Type Checking Expressions
E->int_const
E->float_const
E->id
E->E $1+\mathcal{E} 2$

Type Checking Expressions

$$
\begin{aligned}
& \text { E - PE1 [E2] } \\
& \mathcal{E} \cdot>{ }^{*}{ }^{E} 1 \\
& \text { E.> } \mathfrak{C H E} 1 \\
& \text { E->E1 (E2) } \\
& \mathcal{E}->(E 1, E 2)
\end{aligned}
$$

Type Checking Statements
 S $->$ id $:=\mathcal{E}$
 S->if Ethen S 1
 S->wrile \mathfrak{E} do S_{1}
 S->S1; S2

Equivalence of Type Expressions

Problem: When in E1.type = E2.type?

- We need a precise definition for type equivalence
- Interaction between type equivalence and type representation

Example: type vector = array [1..10] of real type weight = array [1..10] of real var x, y : vector; z : weight

Name Equivalence: When they fave the same name.

- x y have the same type; z fias a different type.

Structural Equivalence: When they fave the same structure.

- x,y,z have the same type.

Structural Equivalence

- Definition: by Induction
- Same basic type
- Same constructor applied to $\mathcal{S E}$ Type (induction step)
- Same $\mathcal{D A G}$ Representation
- In Practice: modifications are needed
- Do not include array bounds - when they are passed as parameters
- Other applied representations (More compact)
- Can be applied to: Tree/ $\mathcal{D A G}$
- Does not checkfor cycles
- Later improve it.

Algoritfin Testing
 Structural Equivalence

```
functionstequiv(s,t): Goolean
{
    if(s & tare of the same basic type) return true;
    if(s=array(s1,s2)&~t=array(t1,t2))
        return equal(s 1, t1) eqstequiv(s2,t2);
    if (s=tuple (s 1,s2)&Gt=tuple(t1,t2))
        return stequiv(s 1, t1) & stequiv(s2,t2);
    if (s=arrow(s1,s2)& t=arrow(t1,t2))
        return stequiv(s 1, t1) & stequiv(s2, t2);
    if (s = pointer(s 1) & t = pointer(t1))
        returnstequiv(s 1, t1);
}
```


Recursive Types

Where: Linked Lists, Trees, etc.
How: records containing pointers to similar records
Example: typelink $=\uparrow$ cell;
cell $=$ record info: int; ne $x t=$ linkend

Substituting names out (cycles)

Recursive Types in C

- CPolicy: avoid cycles in type graphs 6y:
- Ulsing structural equivalence for all types
- Except for records ->name equivalence
- Example:
- struct cell \{int info; struct cell * next; \}
- Name use: name cell becomes part of the type of the record.
- Ulse the acyclic representation
- Names declared before use - except for pointers to records.
- Cycles - potential due to pointers in records
- Testing for structural equivalence stops when a record constructor is reached \sim same named record type?

Overloading Functions G Operators

- Overloaded Symbol: one that has different meanings depending on its context
- Example: Addition operator +
- Resolving (operator identification): overloading is resolved when a unique meaning is determined.
- Context: it is not always possible to resolve overloading by looking only the arguments of a function
- Set of possible types
- Context (inkerited attribute) necessary

Overloading Example

$$
\begin{aligned}
& \text { function"*"(i,j:integer) returncomplex; } \\
& \text { function"*" }(x, y: \operatorname{comple} x) \text { returncomplex; }
\end{aligned}
$$

* Has the following types:
arrow(tuple(integer, integer), integer)
arrow(tuple(integer, integer), comple χ)
arrow(tuple (comple x, comple $\chi)$, comple $\chi)$
int i, j;
$k=i^{*} j$;

Narrowing Down Types

$\mathcal{E}^{\prime}->\mathcal{E}$

E->id
$\mathcal{E}->\mathcal{E} 1(\mathcal{E} 2)$
\{疋'types $=$ E. types
E.unique $=\underline{\text { if }}$ 包:types $=\{t\} \underline{\text { then }}$ te\{se errors
$\{$ E.types $=$ lookup(id.entry) $\}$
$\left\{\right.$ E.types $=\left\{s^{\prime} \mid \exists s \in \operatorname{E2}\right.$.types and $\mathcal{S}-\boldsymbol{x}^{\prime} \in$ E1.types\}
$t=$ E.unique
$\mathcal{S}=\{s \mid s \in \mathcal{E} 2 . t y p e s$ and $S-x \in \mathcal{E} 1 . t y p e s\}$
E2.unique $=$ if $\mathcal{S}=\{s\}$ the \mathcal{S} e\{se error
E1.unique $=$ if $S=\{s\}$ the $S-x$ e\{se error

Polymorpfic Functions

- Defn: a piece of code (functions, operators) that can be executed with arguments of different types.
- Examples: Built in Operator indexing arrays, pointer manipulation
- Wry use them: facilitate manipulation of data structures regardless of types.
- Example $\mathcal{H L}$:
fun length(lptr) $=$ if null (lptr) then 0 else length $(+l($ (ptr $))+1$

\mathcal{A} Language for Polymorpfic

Functions

$$
\begin{aligned}
& \mathcal{P} \rightarrow \mathcal{D} ; \mathcal{E} \\
& \mathcal{D}->\mathcal{D} ; \mathcal{D} \mid \text { id }: Q \\
& Q \rightarrow \forall a \cdot Q \mid \mathcal{T} \\
& \mathcal{T} \rightarrow \text { arrow }(\mathcal{T}, \mathcal{T}) \mid \text { tuple }(\mathcal{T}, \mathcal{T}) \\
& \\
& \quad \mid \text { unary }(\mathcal{T}) \mid(\mathcal{T}) \\
& \\
& \quad \mid \text { Gasic } \\
& \quad \mid \boldsymbol{a} \\
& \mathcal{E} \rightarrow>\mathcal{E}(\mathcal{E})|\mathcal{E}, \mathcal{E}| \text { id }
\end{aligned}
$$

Type Variables

- Why: variables representing type expressions allow us to talk about unknown types.
- Ulse Greekalphabets $\alpha, \beta, Y \ldots$
- Application: checkconsistent usage of identifiers in a language that does not require identifiers to be declared before usage.
- A type variable represents the type of an undeclared identifier.
- Type Inference Problem: Determine the type of a language constant from the way it is used.
- We have to deal with expressions containing variables.

Examples of Type Inference

Type link \uparrow cell;
Procedure mlist (lptr: link; procedure p); \{ while lptr <> null \{ p(lptr); lptr := lptr \uparrow.next \} \}
Hence: p: link->void
Function deref (p)
\{ return p \uparrow; \}
P: $\boldsymbol{\beta}, \boldsymbol{\beta}=$ pointer (α)
$\mathcal{H e n c e}$ deref: \forall a. pointer (a) ->a

Program in Polymorpfic Language

Subsripts iand o distinguisf between the inner and outer occurrences of deref, respectively.

Type Checking Polymorpfic Func tions

- Distinct occurrences of a p.f.in the same expression need not have arguments of the same type.
- deref(deref (q))
- Replace a with frest variable and remove \forall ($\mathbf{a}_{\mathrm{i}}, \mathrm{a}_{0}$)
- The notion of type equivalence changes in the presence of variables.
- Ulse unification: check if sand t can be made structurally equivalent by replacing type vars by the type expression.
- We need a mechanism for recording the effect of unifying two expressions.
- A type variable may occur in several type expressions.

Substitutions and

Unification

- Substitution: a mapping from type variables to type expressions. Function subst (t: type Expr): type Expr \{S if (t is a basic type) return t;
if (t is a Gasic variable) return $S(t)$; - identify if $t \notin S$
if (t is t 1 ->t2) return subst(t1) ->subst (t2); \}
- Instance: $S(t)$ is an instance of t written $S(t)<t$.
- Examples: pointer (integer) <pointer (a), int $>$ real $\neq \mathrm{a}>\mathrm{a}$
- Unify: $\dagger 1 \approx \dagger 2$ if $\exists \mathcal{S} . \mathcal{S}(t 1)=\mathcal{S}(t 2)$
- Most General Unifier $\mathcal{S}: \mathcal{A}$ substitution S :
- $S(t 1)=S(t 2)$
- $\forall \mathcal{S}^{\prime} \cdot \mathcal{S}^{\prime}(t 1)=\mathcal{S}^{\prime}(t 2) \rightarrow \forall t . \mathcal{S}^{\prime}(t)<\mathcal{S}(t)$.

Polymorpfic Type checking Translation Scfeme

$\mathcal{E}->\mathcal{E} 1(\mathcal{E} 2)$	\{ $p:=$ mkle af(newtypevar); unify (E1.type, mKnode (->', E2.type, p); E.type $=p\}$
$\mathcal{E}->\mathcal{E} 1, \mathfrak{E} 2$	\{E.type $:=$ mKnode ('x', E1.type, E2.type); \}
E $->$ id	\{ E.type := fresh(id.type) \}

fresh (t): replaces bound vars in t by fresh vars. Returns pointer to a node representing result.type.
fresh $(\forall$ a.pointer $(\mathbf{a})->\mathbf{a})=\operatorname{pointer}\left(\mathbf{a}_{1}\right)->\mathbf{a}_{1}$.
unify (m, n) : unifies expressions represented $6 y m$ and n.

- Side-effect: Keep track of substitution
- Fail-to-unify: abort type checking.

PIype Checking Example

Given: derefo (derefi (q))

$$
q=p o i n t e r(\text { pointer }(\text { int }))
$$

