
Introduction
LALR Parsing Tables

LALR Parsing Tables
• LALR stands for LookAhead LR.

• LALR parsers are often used in practice because
LALR parsing tables are smaller than LR(1) parsing
tables.

• The number of states in SLR and LALR parsing
tables for a grammar G are equal.

• But LALR parsers recognize more grammars than
SLR parsers.

• yacc creates a LALR parser for the given grammar.
• A state of LALR parser will be again a set of LR(1)

items.

2

Creating LALR Parsing Tables

Canonical LR(1) Parser 
LALR Parser

shrink # of states

• This shrink process may introduce a
reduce/reduce conflict in the resulting LALR
parser (so the grammar is NOT LALR)

• But, this shrik process does not produce a
shift/reduce conflict.

3

The Core of A Set of LR(1) Items
• The core of a set of LR(1) items is the set of its first component.

Ex: S  L.=R,$  S  L.=R Core
R  L.,$ R  L.

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser
with same cores. Then we will merge them as a single state.

I1:L  id.,= A new state: I12: L  id.,=

 L  id.,$

I2:L  id.,$ have same core, merge them

• We will do this for all states of a canonical LR(1) parser to get the states of
the LALR parser.

• In fact, the number of the states of the LALR parser for a grammar will be
equal to the number of states of the SLR parser for that grammar.

4

Creation of LALR Parsing Tables
• Create the canonical LR(1) collection of the sets of LR(1) items

for the given grammar.
• Find each core; find all sets having that same core; replace

those sets having same cores with a single set which is their
union.

C={I0,...,In}  C’={J1,...,Jm} where m  n
• Create the parsing tables (action and goto tables) same as the

construction of the parsing tables of LR(1) parser.
• Note that: If J=I1  ...  Ik since I1,...,Ik have same cores

 cores of goto(I1,X),...,goto(I2,X) must be same.
• So, goto(J,X)=K where K is the union of all sets of items having

same cores as goto(I1,X).
• If no conflict is introduced, the grammar is LALR(1) grammar.

(We may only introduce reduce/reduce conflicts; we cannot
introduce a shift/reduce conflict)

5

