Introduction

LALR Parsing Constructing Canonical LR(1) Parsing Tables

LALR Parsing

- Canonical sets of LR(1) items
- Number of states much larger than in the SLR construction
- LR(1) = Order of thousands for a standard prog. Lang.
- SLR(1) = order of hundreds for a standard prog. Lang.
- LALR(1) (lookahead-LR)
- A tradeoff:
	- Collapse states of the LR(1) table that have the same *core* (the "LR(0)" part of each state)

2

- LALR never introduces a Shift/Reduce Conflict if LR(1) doesn't.
- It might introduce a Reduce/Reduce Conflict (that did not exist in the LR(1))…
- Still much better than SLR(1) (larger set of languages)
- \blacksquare ... but smaller than $LR(1)$
- What Yacc and most compilers employ.

Conflict Example

 $S \rightarrow L=R$ I_0 : S^k \rightarrow S $\qquad \qquad \mathcal{A}_1: S' \rightarrow S$. : $S' \rightarrow S$. $I_6: S \rightarrow L = R$ I_9 : $S \rightarrow L=R$. $S \rightarrow R$ $S \rightarrow L=R$ $R \rightarrow L$ $L \rightarrow *R$
 $L \rightarrow id$ $S \rightarrow R$
 $L \rightarrow *R$ $I_2: S \to L = R$ $L \to R$ $R \rightarrow L.$ L. $L \rightarrow id$ $R \rightarrow L$ $\angle L \rightarrow id$ $R \rightarrow L$ $I_3: S \rightarrow R$.

3

 $I_7: L \rightarrow {}^{\star}R.$ $I_4: L \rightarrow {}^{\star} R$ I_7 \searrow Problem $R \rightarrow L$ $FOLLOW(R) = \{ = , $ }$ $L \rightarrow .*R$ I_8 : $R \rightarrow L$. $=$ shift 6 L \rightarrow .id reduce by $R \rightarrow L$ shift/reduce conflict $I_5: L \rightarrow id.$

Conflict Example2

Problem $FQLLOW(A)=\{a,b\}$ $FOLLOW(B)=\{a,b\}$ a reduce by $A \rightarrow \varepsilon$ b reduce by $A \rightarrow \varepsilon$ reduce/reduce conflict reduce/reduce conflict

reduce by $B \to \varepsilon$ reduce by $B \to \varepsilon$

4

Constructing Canonical LR(1) Parsing Tables

• In SLR method, the state i makes a reduction by $A\rightarrow\alpha$ when the current token is a:

5

- if the $A \rightarrow \alpha$. in the I_i and a is FOLLOW(A)
- \bullet In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta\alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR (1) item is:

the LR(1) item

 $A \rightarrow \alpha$. β ,a where **a** is the look-head of

6

(**a** is a terminal or end-

marker.)

LR(1) Item (cont.)

• When β (in the LR(1) item $A \rightarrow \alpha$. β ,a) is not empty, the look-head does not have any affect. 7

- When β is empty $(A \rightarrow \alpha, a)$, we do the reduction by $A \rightarrow \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \rightarrow \alpha_{\cdot}, a_1$ where ${a_1,...,a_n} \subseteq \text{FOLLOW}(A)$

... $A \rightarrow \alpha_{\cdot}, a_{n}$

Canonical Collection of Sets of LR(1) Items

8

• The construction of the canonical collection of the sets of LR(1) items are similar to the construction of the canonical collection of the sets of LR(0) items, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- **■** if A→α. Bβ,a in closure(I) and B→γ is a production rule of G; then $B\rightarrow y$, b will be in the closure(I) for each terminal b in $FIRST(\beta a)$.

goto operation

• If I is a set of $LR(1)$ items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:

9

 \circ If $A \rightarrow \alpha$. X β ,a in I then every item in **closure** $(A \rightarrow \alpha X.\beta, a)$ will be in goto(I,X).