
Introduction
LALR Parsing
Constructing Canonical LR(1)
Parsing Tables

LALR Parsing
• Canonical sets of LR(1) items
• Number of states much larger than in the SLR construction
• LR(1) = Order of thousands for a standard prog. Lang.
• SLR(1) = order of hundreds for a standard prog. Lang.
• LALR(1) (lookahead-LR)
• A tradeoff:

▫ Collapse states of the LR(1) table that have the same core (the “LR(0)” part of each
state)

▫ LALR never introduces a Shift/Reduce Conflict if LR(1) doesn’t.
▫ It might introduce a Reduce/Reduce Conflict (that did not exist in the LR(1))…
▫ Still much better than SLR(1) (larger set of languages)
▫ … but smaller than LR(1)

• What Yacc and most compilers employ.

2

Conflict Example
S  L=R I0: S’  .S I1:S’  S. I6:S  L=.R

I9: S  L=R.
S  R S  .L=R R  .L
L *R S  .R I2:S  L.=R L .*R
L  id L  .*R R  L. L  .id
R  L L  .id

R  .L I3:S  R.

I4:L  *.R I7:L  *R.
Problem R  .L

FOLLOW(R)={=,$} L .*R I8: R  L.
= shift 6 L  .id

reduce by R  L
shift/reduce conflict I5:L  id.

3

Conflict Example2
S  AaAb I0: S’  .S
S  BbBa S  .AaAb
A   S  .BbBa
B   A  .

B  .

Problem
FOLLOW(A)={a,b}
FOLLOW(B)={a,b}
a reduce by A   b reduce by A  

reduce by B   reduce by B  
reduce/reduce conflict reduce/reduce conflict

4

Constructing Canonical LR(1) Parsing
Tables
• In SLR method, the state i makes a reduction by A

when the current token is a:
• if the A. in the Ii and a is FOLLOW(A)

• In some situations, A cannot be followed by the
terminal a in a right-sentential form when 
and the state i are on the top stack. This means
that making reduction in this case is not correct.

S  AaAb SAaAbAabab
SBbBaBbaba

S  BbBa
A   Aab   ab Bba   ba
B   AaAb  Aa  b BbBa  Bb  a

5

LR(1) Item
• To avoid some of invalid reductions, the states need

to carry more information.
• Extra information is put into a state by including a

terminal symbol as a second component in an item.

• A LR(1) item is:
A  .,a where a is the look-head of

the LR(1) item
(a is a terminal or end-

marker.)

6

LR(1) Item (cont.)
• When  (in the LR(1) item A .,a) is not

empty, the look-head does not have any affect.
• When  is empty (A  .,a), we do the

reduction by A only if the next input symbol
is a (not for any terminal in FOLLOW(A)).

• A state will contain A .,a1 where
{a1,...,an}  FOLLOW(A)

...
A .,an

7

Canonical Collection of Sets of LR(1)
Items
• The construction of the canonical collection of the

sets of LR(1) items are similar to the construction of
the canonical collection of the sets of LR(0) items,
except that closure and goto operations work a little
bit different.

closure(I) is: (where I is a set of LR(1) items)
▫ every LR(1) item in I is in closure(I)
▫ if A.B,a in closure(I) and B is a production rule of

G; then B.,b will be in the closure(I) for each
terminal b in FIRST(a) .

8

goto operation

• If I is a set of LR(1) items and X is a grammar
symbol (terminal or non-terminal), then
goto(I,X) is defined as follows:
▫ If A .X,a in I

then every item in closure({A  X.,a})
will be in goto(I,X).

9

