Compiler Design

Lecture-15

Introduction to Bottom-Up Parsing

- Topics Covered

Bottom-Up Parsing
Constructing an SLR Parsing Table

Part Il
Bottom-Up Parsing

« There are different approaches to bottom-up
parsing. One of them Is called Shift-Reduce
parsing, which in turns has a number of different
Instantiations.

« Operator-precedence parsing IS one such
method as is LR parsing which is much more
general.

e In this course, we will be focusing on LR
parsing. LR Parsing itself takes three forms:
Simple LR-Parsing (SLR) a simple but limited
version of LR-Parsing; Canonical LR parsing,
the most powerful but most expensive version;

~n A 1 ALl D waidAaiala P~ imtAaArmaAaA A+ 1 At r\v'\lNI

LR Parsing: Advantages

LR Parsers can recognize any Ianguag{e for
which a context free grammar can be written.

« LR Parsing Is the most general non-
backtracking shift-reduce method known, yet
it Is as efficient as ither shift-reduce
approaches

» The class of grammars that can be parsed by
an LR parser Is a proper superset of that that
can be parsed by a predictive parser.

 An LR-parser can detect a syntactic error as
soon as It is possible to do so on a left-to-right
scan of the input.

LR-Parsing:
Drawback/Solution

» The main drawback of LR parsing Is that it is
too much work to construct an LR parser by
hand for a typical programming language
grammat.

» Fortunately, specialized tools to construct LR
parsers automatically have been designed.

» With such tools, a user can write a context-
free grammar and have a parser generator
automatically produce a parser for that
grammar.

« An example of such a tool Is Yacc “Yet
Another Compiler-Compiler”

LR Parsing Algorithms:
Detalls |

* An LR parser consists of an input, output, a
stack, a driver program and a parsing table
that has two parts: action and goto.

 The driver program Is the same for all LR
Parsers. Only the parsing table changes from
one parser to the other.

« The program uses the stack to store a string
of the form s X;s,X,...X..S,,, Where s_ Is the
top of the stack. The Sks ‘are state symbols
while the Xi's are grammar symbols. Together
state and grammar symbols determine a
shift-reduce parsing decision.

LR Parsing Algorithms:
Detalls I

» The parsing table consists of two parts: a
parsing action function and a goto function.

» The LR parsing program determines sm, the
state on top of the stack and a; the current
iInput. It then consults action|[s,, a] which can
take one of four values:

- Shift

- Reduce
- Accept
* Error

LR Parsing Algorithms:
Details Il

« If action[s,,, a] = Shift s, where s Is a state,
then the parser pushes a, and s on the
stack.

o If action[s Reduce A - B, then a; and
S, are repTaced by A, and, if s was the state
appearlng below a; in the stack then gotols,
A] Is consulted and the state it stores is
pushed onto the stack.

o If action[s,, a] = Accept, parsing IS
completed

o If action[s,,, a] = Error, then the parser
discovered an error.

LR Parsing Example: The

Grammar
E>E+T
ES>T
TOT*F
T>F
F > (E)
F > id

o O A~ D E

L R-Parser Example: The Parsing
Table

State Action Goto

id + * () $ T F
0) S5 s4 2 3
1 S6 Acc
2 2 s/ 2 2
3 r4 r4 r4 r4
4 S5 s4 2 3
) 6 6 6 6
6 S5 s4 9 3
7 S5 s4 10
8 S6 s1l
9 rl s/ R1 rl
10 3 3 3 3
11 5 5 5 5

LI~ dlol CAAlllpic. rdlollly

Trace

Stack Input Action
(1) O id *id + id $ | Shift
(2) 0id5 *id +id $|Reduce by F > id
(3) OF3 *Id+id$|Reduceby T> F
(4 0T2 *id + id $ | Shift
(5) 0T2*7 id +id $ | Shift
(6) 0T2*7id5 +id $|Reduce by F > id
(7) 0T2*7F 10 +id $|Reduce by T> T*F
8 0T2 +id $ | Reduce by E 2T
(9) OE1 +id $ | Shift
(10)0OE1+6 id $ | Shift
(11)OE1+6id5 $ | Reduce by F 2 id
(12)OE1+6F3 $|Reduceby T>F
(13) OE1+6T9 SIE>E+T
(14)0E 1 $ | Accept

SLR Parsing

» Definition: An LR(O) item of a grammar G Is a
production of G with a dot at some position of the
right side.

» Example: A - XYZ yields the four following items:
© A> XYZ
° A> X.YZ
© A> XY.Z
© A> XYZ.

» The production A - € generates only one item, A
> .

» Intuitively, an item indicates how much of a
production we have seen at a given point in the
parsing process.

SLR Parsing

» To create an SLR Parsing table, we define
three new elements:

- An augmented grammar for G, the initial
grammar. If S Is the start symbol of G, we
add the production S’ = .S . The purpose
of this new starting production is to indicate
to the parser when it should stop parsing
and accept the input.

> The closure operation
> The goto function

SLR Parsing:

The Closure Operation

o |Iflis aset of items for a grammar G,
then closure(l) Is the set of items
constructed from | by the two rules:

1. Initially, every item in | is added to
closure(l)

2. fA> a.BBisinclosure(l) and B = vy
IS a production, then add the item B - .
y to I, if it Is not already there. We apply
this rule until no more new items can be
added to closure(l).

SLK rarsing:
The Closure Operation —
Exaigipégrammar Augmented

grammar
O.E' 2 E
o E2>E+T 1. E2>E+
T
e E2>T 2.E>T
e T>T*H 3. E2>T*
e
Let] = {fﬁé i} then Closure()=4 T E
.+ F>(E) 'E > T 55 FHE)
e F—>1d T-> .F, 6F.311d
F - .id] }

SLR Parsing:
The Goto Operation

o Goto(l,X), where | Is a set of items and X Is
a grammar symbol, is defined as the
closure of the set of all items [A 2 oX.[]
such that [A =2 a.XB]isIn .

o Example: If | is the set of two items {E’ 2>
E.], [E = E.+T]}, then goto(l, +) consists of

N
|:

T T 4 m
NZ 20 2N 2N
Q/\-|-|—||T|

v

SLR Parsing:

Sets-of-ltems Construction
Procedure items(G’)
C = {Closure({|S’ = .S]})}
Repeat
For each set of items | in C and each
grammar symbol X such that got(l,X)
IS not empty and not in C do
add goto(l,X) to C

Until no more sets of items can be added
to C

Example: The Canonical LR(0)

collection for grammar G

N
S
N
9:E2>E+T.

TDTHF

*

111: F > (E).

16: E 2 E+.T
-> .
9
9
9

Constructing an SLR Parsing

Table

1. Construct C={l, I, ... |} the collection of
sets of LR(0) |tems for G’

2. State I Is constructed from .. The parsing
actions for state |1 are determlned as

follows:

a. If[A—-> o.aB]isin [and goto(l;,a) = I;, then set

action[i,a
terminal.

b, fF[AD a.

to “Shlftj" Here, a must be a

IS In I;, then set action]i, a] to

“reduce A > o” for all a in Follow(A); here A
may not be S'.

c. If[S’-> S.]isin I, then set action]i,$] to

“accept”

If any conflicting actions are generated by the
above rules, we say that the grammar is not
SLR(1). The algorithm then fails to produce a

Constructing an SLR Parsing
Table (cont’'d)

3. The goto transitions for state | are
constructed for all nonterminals A using
the rule: If goto(l;, A) = I;, then gotoli, A] = .

4. All entries not defined by rules (2) and (3)
are made “error”.

5. The initial state of the parser is the one
constructed from the set of items
containing [S’ =2 S].

