
Compiler DesignCompiler Design

LectureLecture--1515

Introduction to Bottom-Up Parsing

Topics CoveredTopics Covered
Bottom-Up Parsing
Constructing an SLR Parsing Table

Part IIPart II
BottomBottom--Up Parsing Up Parsing
 There are different approaches to bottom-up

parsing. One of them is called Shift-Reduce
parsing, which in turns has a number of different
instantiations.

 Operator-precedence parsing is one such
method as is LR parsing which is much more
general.

 In this course, we will be focusing on LR
parsing. LR Parsing itself takes three forms:
Simple LR-Parsing (SLR) a simple but limited
version of LR-Parsing; Canonical LR parsing,
the most powerful, but most expensive version;
and LALR which is intermediate in cost and

4

LR Parsing: AdvantagesLR Parsing: Advantages
 LR Parsers can recognize any language for

which a context free grammar can be written.

 LR Parsing is the most general non-
backtracking shift-reduce method known, yet
it is as efficient as ither shift-reduce
approaches

 The class of grammars that can be parsed by
an LR parser is a proper superset of that that
can be parsed by a predictive parser.

 An LR-parser can detect a syntactic error as
soon as it is possible to do so on a left-to-right
scan of the input.

5

LRLR--Parsing: Parsing:
Drawback/SolutionDrawback/Solution
 The main drawback of LR parsing is that it is

too much work to construct an LR parser by
hand for a typical programming language
grammar.

 Fortunately, specialized tools to construct LR
parsers automatically have been designed.

 With such tools, a user can write a context-
free grammar and have a parser generator
automatically produce a parser for that
grammar.

 An example of such a tool is Yacc “Yet
Another Compiler-Compiler”

6

LR Parsing Algorithms: LR Parsing Algorithms:
Details IDetails I
 An LR parser consists of an input, output, a

stack, a driver program and a parsing table
that has two parts: action and goto.

 The driver program is the same for all LR
Parsers. Only the parsing table changes from
one parser to the other.

 The program uses the stack to store a string
of the form s0X1s1X2…Xmsm, where sm is the
top of the stack. The Sk‘s are state symbols
while the Xi‘s are grammar symbols. Together
state and grammar symbols determine a
shift-reduce parsing decision.

7

LR Parsing Algorithms: LR Parsing Algorithms:
Details IIDetails II
 The parsing table consists of two parts: a

parsing action function and a goto function.
 The LR parsing program determines sm, the

state on top of the stack and ai, the current
input. It then consults action[sm, ai] which can
take one of four values:

Shift
Reduce
Accept
Error

8

LR Parsing Algorithms: LR Parsing Algorithms:
Details IIIDetails III
 If action[sm, ai] = Shift s, where s is a state,

then the parser pushes ai and s on the
stack.

 If action[sm, ai] = Reduce A β, then ai and
sm are replaced by A, and, if s was the state
appearing below ai in the stack, then goto[s,
A] is consulted and the state it stores is
pushed onto the stack.

 If action[sm, ai] = Accept, parsing is
completed

 If action[sm, ai] = Error, then the parser
discovered an error. 9

LR Parsing Example: The LR Parsing Example: The
GrammarGrammar
1. E E + T
2. E T
3. T T * F
4. T F
5. F (E)
6. F id

10

LRLR--Parser Example: The Parsing Parser Example: The Parsing
TableTable

State Action Goto
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 Acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 R1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5 11

LRLR--Parser Example: Parsing Parser Example: Parsing
TraceTrace

Stack Input Action
(1) 0 id * id + id $ Shift
(2) 0 id 5 * id + id $ Reduce by F id
(3) 0 F 3 * id + id $ Reduce by T F
(4) 0 T 2 * id + id $ Shift
(5) 0 T 2 * 7 id + id $ Shift
(6) 0 T 2 * 7 id 5 + id $ Reduce by F id
(7) 0 T 2 * 7 F 10 + id $ Reduce by T T * F
(8) 0 T 2 + id $ Reduce by E T
(9) 0 E 1 + id $ Shift
(10) 0 E 1 + 6 id $ Shift
(11) 0 E 1 + 6 id 5 $ Reduce by F id
(12) 0 E 1 + 6 F 3 $ Reduce by T F
(13) 0 E 1 + 6 T 9 $ E E + T
(14) 0 E 1 $ Accept 12

SLR Parsing SLR Parsing
 Definition: An LR(0) item of a grammar G is a

production of G with a dot at some position of the
right side.

 Example: A XYZ yields the four following items:
◦ A .XYZ
◦ A X.YZ
◦ A XY.Z
◦ A XYZ.

 The production A є generates only one item, A
 .

 Intuitively, an item indicates how much of a
production we have seen at a given point in the
parsing process.

13

SLR ParsingSLR Parsing
 To create an SLR Parsing table, we define

three new elements:

◦ An augmented grammar for G, the initial
grammar. If S is the start symbol of G, we
add the production S’ .S . The purpose
of this new starting production is to indicate
to the parser when it should stop parsing
and accept the input.
◦ The closure operation
◦ The goto function

14

SLR Parsing:SLR Parsing:
The Closure OperationThe Closure Operation
 If I is a set of items for a grammar G,

then closure(I) is the set of items
constructed from I by the two rules:

1. Initially, every item in I is added to
closure(I)

2. If A α . B β is in closure(I) and B γ
is a production, then add the item B .
γ to I, if it is not already there. We apply
this rule until no more new items can be
added to closure(I).

15

SLR Parsing:SLR Parsing:
The Closure Operation The Closure Operation ––
Example Example Original grammar Augmented

grammar
0. E’ E

 E E + T 1. E E +
T

 E T 2. E T
 T T * F 3. E T *

F
 T F 4. T F
 F (E) 5. F (E)
 F id 6. F id

16

Let I = {[E’ E]} then Closure(I)=
{ [E’ .E], [E .E + T],
[E .T], [E .T*F],
[T .F], [F .(E)]
[F .id] }

SLR Parsing:SLR Parsing:
The Goto OperationThe Goto Operation
 Goto(I,X), where I is a set of items and X is

a grammar symbol, is defined as the
closure of the set of all items [A αX.β]
such that [A α.Xβ] is in I.

 Example: If I is the set of two items {E’
E.], [E E.+T]}, then goto(I, +) consists of

E E + .T
T .T * F
T .F
F .(E)
F .id

17

SLR Parsing:SLR Parsing:
SetsSets--ofof--Items ConstructionItems Construction
Procedure items(G’)

C = {Closure({[S’ .S]})}
Repeat

For each set of items I in C and each
grammar symbol X such that got(I,X)
is not empty and not in C do

add goto(I,X) to C
Until no more sets of items can be added

to C

18

Example: The Canonical LR(0) Example: The Canonical LR(0)
collection for grammar Gcollection for grammar G

I0: E’ .E I4: F (.E) I7: T T * .F
E .E + T E .E + T F .(E)
E .T E .T F .id
T .T * F T .T * F I8: F (E.)
T .F T .F E E.+T
F .(E) F .(E) I9: E E + T.
F .id F .id T T.* F

I1: E’ E. I5: F id. I10: T T*F.
E E.+T I6: E E+.T I11: F (E).

I2: E T. T .T*F
T T. * F T .F

I3: T F. F .(E)
F .id

19

Constructing an SLR Parsing Constructing an SLR Parsing
Table Table
1. Construct C={I0, I1, … In} the collection of

sets of LR(0) items for G’
2. State i is constructed from Ii. The parsing

actions for state i are determined as
follows:

a. If [A α.aβ] is in Ii and goto(Ii,a) = Ij, then set
action[i,a] to “shift j”. Here, a must be a
terminal.

b. If [A α.] is in Ii, then set action[i, a] to
“reduce A α” for all a in Follow(A); here A
may not be S’.

c. If [S’ S.] is in Ii, then set action[i,$] to
“accept”

If any conflicting actions are generated by the
above rules, we say that the grammar is not
SLR(1). The algorithm then fails to produce a
parser.

20

Constructing an SLR Parsing Constructing an SLR Parsing
Table (cont’d)Table (cont’d)
3. The goto transitions for state i are

constructed for all nonterminals A using
the rule: If goto(Ii, A) = Ij, then goto[i, A] = j.

4. All entries not defined by rules (2) and (3)
are made “error”.

5. The initial state of the parser is the one
constructed from the set of items
containing [S’ S].

See example in class

21

