
Compiler DesignCompiler Design

LectureLecture--1515

Introduction to Bottom-Up Parsing

Topics CoveredTopics Covered
Bottom-Up Parsing
Constructing an SLR Parsing Table

Part IIPart II
BottomBottom--Up Parsing Up Parsing
 There are different approaches to bottom-up

parsing. One of them is called Shift-Reduce
parsing, which in turns has a number of different
instantiations.

 Operator-precedence parsing is one such
method as is LR parsing which is much more
general.

 In this course, we will be focusing on LR
parsing. LR Parsing itself takes three forms:
Simple LR-Parsing (SLR) a simple but limited
version of LR-Parsing; Canonical LR parsing,
the most powerful, but most expensive version;
and LALR which is intermediate in cost and

4

LR Parsing: AdvantagesLR Parsing: Advantages
 LR Parsers can recognize any language for

which a context free grammar can be written.

 LR Parsing is the most general non-
backtracking shift-reduce method known, yet
it is as efficient as ither shift-reduce
approaches

 The class of grammars that can be parsed by
an LR parser is a proper superset of that that
can be parsed by a predictive parser.

 An LR-parser can detect a syntactic error as
soon as it is possible to do so on a left-to-right
scan of the input.

5

LRLR--Parsing: Parsing:
Drawback/SolutionDrawback/Solution
 The main drawback of LR parsing is that it is

too much work to construct an LR parser by
hand for a typical programming language
grammar.

 Fortunately, specialized tools to construct LR
parsers automatically have been designed.

 With such tools, a user can write a context-
free grammar and have a parser generator
automatically produce a parser for that
grammar.

 An example of such a tool is Yacc “Yet
Another Compiler-Compiler”

6

LR Parsing Algorithms: LR Parsing Algorithms:
Details IDetails I
 An LR parser consists of an input, output, a

stack, a driver program and a parsing table
that has two parts: action and goto.

 The driver program is the same for all LR
Parsers. Only the parsing table changes from
one parser to the other.

 The program uses the stack to store a string
of the form s0X1s1X2…Xmsm, where sm is the
top of the stack. The Sk‘s are state symbols
while the Xi‘s are grammar symbols. Together
state and grammar symbols determine a
shift-reduce parsing decision.

7

LR Parsing Algorithms: LR Parsing Algorithms:
Details IIDetails II
 The parsing table consists of two parts: a

parsing action function and a goto function.
 The LR parsing program determines sm, the

state on top of the stack and ai, the current
input. It then consults action[sm, ai] which can
take one of four values:

Shift
Reduce
Accept
Error

8

LR Parsing Algorithms: LR Parsing Algorithms:
Details IIIDetails III
 If action[sm, ai] = Shift s, where s is a state,

then the parser pushes ai and s on the
stack.

 If action[sm, ai] = Reduce A β, then ai and
sm are replaced by A, and, if s was the state
appearing below ai in the stack, then goto[s,
A] is consulted and the state it stores is
pushed onto the stack.

 If action[sm, ai] = Accept, parsing is
completed

 If action[sm, ai] = Error, then the parser
discovered an error. 9

LR Parsing Example: The LR Parsing Example: The
GrammarGrammar
1. E  E + T
2. E  T
3. T  T * F
4. T  F
5. F  (E)
6. F  id

10

LRLR--Parser Example: The Parsing Parser Example: The Parsing
TableTable

State Action Goto
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 Acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 R1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5 11

LRLR--Parser Example: Parsing Parser Example: Parsing
TraceTrace

Stack Input Action
(1) 0 id * id + id $ Shift
(2) 0 id 5 * id + id $ Reduce by F  id
(3) 0 F 3 * id + id $ Reduce by T  F
(4) 0 T 2 * id + id $ Shift
(5) 0 T 2 * 7 id + id $ Shift
(6) 0 T 2 * 7 id 5 + id $ Reduce by F  id
(7) 0 T 2 * 7 F 10 + id $ Reduce by T  T * F
(8) 0 T 2 + id $ Reduce by E T
(9) 0 E 1 + id $ Shift
(10) 0 E 1 + 6 id $ Shift
(11) 0 E 1 + 6 id 5 $ Reduce by F  id
(12) 0 E 1 + 6 F 3 $ Reduce by T  F
(13) 0 E 1 + 6 T 9 $ E  E + T
(14) 0 E 1 $ Accept 12

SLR Parsing SLR Parsing
 Definition: An LR(0) item of a grammar G is a

production of G with a dot at some position of the
right side.

 Example: A  XYZ yields the four following items:
◦ A  .XYZ
◦ A  X.YZ
◦ A  XY.Z
◦ A  XYZ.

 The production A  є generates only one item, A
 .

 Intuitively, an item indicates how much of a
production we have seen at a given point in the
parsing process.

13

SLR ParsingSLR Parsing
 To create an SLR Parsing table, we define

three new elements:

◦ An augmented grammar for G, the initial
grammar. If S is the start symbol of G, we
add the production S’  .S . The purpose
of this new starting production is to indicate
to the parser when it should stop parsing
and accept the input.
◦ The closure operation
◦ The goto function

14

SLR Parsing:SLR Parsing:
The Closure OperationThe Closure Operation
 If I is a set of items for a grammar G,

then closure(I) is the set of items
constructed from I by the two rules:

1. Initially, every item in I is added to
closure(I)

2. If A  α . B β is in closure(I) and B  γ
is a production, then add the item B  .
γ to I, if it is not already there. We apply
this rule until no more new items can be
added to closure(I).

15

SLR Parsing:SLR Parsing:
The Closure Operation The Closure Operation ––
Example Example Original grammar Augmented

grammar
0. E’  E

 E  E + T 1. E  E +
T

 E  T 2. E  T
 T  T * F 3. E  T *

F
 T  F 4. T  F
 F  (E) 5. F  (E)
 F  id 6. F  id

16

Let I = {[E’  E]} then Closure(I)=
{ [E’  .E], [E  .E + T],
[E  .T], [E  .T*F],
[T  .F], [F  .(E)]
[F  .id] }

SLR Parsing:SLR Parsing:
The Goto OperationThe Goto Operation
 Goto(I,X), where I is a set of items and X is

a grammar symbol, is defined as the
closure of the set of all items [A  αX.β]
such that [A  α.Xβ] is in I.

 Example: If I is the set of two items {E’ 
E.], [E  E.+T]}, then goto(I, +) consists of

E  E + .T
T  .T * F
T  .F
F  .(E)
F  .id

17

SLR Parsing:SLR Parsing:
SetsSets--ofof--Items ConstructionItems Construction
Procedure items(G’)

C = {Closure({[S’  .S]})}
Repeat

For each set of items I in C and each
grammar symbol X such that got(I,X)
is not empty and not in C do

add goto(I,X) to C
Until no more sets of items can be added

to C

18

Example: The Canonical LR(0) Example: The Canonical LR(0)
collection for grammar Gcollection for grammar G

I0: E’  .E I4: F  (.E) I7: T  T * .F
E  .E + T E  .E + T F  .(E)
E  .T E  .T F  .id
T  .T * F T  .T * F I8: F  (E.)
T  .F T  .F E  E.+T
F  .(E) F  .(E) I9: E  E + T.
F  .id F  .id T  T.* F

I1: E’  E. I5: F  id. I10: T  T*F.
E  E.+T I6: E  E+.T I11: F  (E).

I2: E  T. T  .T*F
T  T. * F T  .F

I3: T  F. F  .(E)
F  .id

19

Constructing an SLR Parsing Constructing an SLR Parsing
Table Table
1. Construct C={I0, I1, … In} the collection of

sets of LR(0) items for G’
2. State i is constructed from Ii. The parsing

actions for state i are determined as
follows:

a. If [A  α.aβ] is in Ii and goto(Ii,a) = Ij, then set
action[i,a] to “shift j”. Here, a must be a
terminal.

b. If [A  α.] is in Ii, then set action[i, a] to
“reduce A  α” for all a in Follow(A); here A
may not be S’.

c. If [S’  S.] is in Ii, then set action[i,$] to
“accept”

If any conflicting actions are generated by the
above rules, we say that the grammar is not
SLR(1). The algorithm then fails to produce a
parser.

20

Constructing an SLR Parsing Constructing an SLR Parsing
Table (cont’d)Table (cont’d)
3. The goto transitions for state i are

constructed for all nonterminals A using
the rule: If goto(Ii, A) = Ij, then goto[i, A] = j.

4. All entries not defined by rules (2) and (3)
are made “error”.

5. The initial state of the parser is the one
constructed from the set of items
containing [S’  S].

See example in class

21

