
Compiler DesignCompiler Design

LectureLecture--9 9

Parsing Algorithm

Topics CoveredTopics Covered

Designing A Grammar
Parsing Algorithms
Top Down Parsing
Bottom Up Parsing

Designing A GrammarDesigning A Grammar
Concerns:
◦ Accuracy
◦ Unambiguity
◦ Formality
◦ Readability, Clarity
◦ Ability to be parsed by a particular

algorithm:
 Top down parser ==> LL(k) Grammar
 Bottom up Parser ==> LR(k) Grammar

◦ Ability to be implemented using particular
approach
 By hand
 By automatic tools

Parsing AlgorithmsParsing Algorithms
Given a grammar, want to parse the

input programs
◦ Check legality
◦ Produce AST representing the structure
◦ Be efficient

 Kinds of parsing algorithms
◦ Top down
◦ Bottom up

Top Down ParsingTop Down Parsing
Build parse tree from the top (start symbol) down to leaves

(terminals)
Basic issue:
• when "expanding" a nonterminal with some r.h.s., how to

pick which r.h.s.?

E.g.
Stmts ::= Call | Assign | If | While
Call ::= Id (Expr {,Expr})
Assign ::= Id = Expr ;
If ::= if Test then Stmts end

| if Test then Stmts else Stmts end
While ::= while Test do Stmts end

Solution: look at input tokens to help decide

Predictive ParserPredictive Parser
Predictive parser: top-down parser that can select
rhs by looking at most k input tokens (the
lookahead)

Efficient:
• no backtracking needed
• linear time to parse

Implementation of predictive parsers:
• recursive-descent parser
• each nonterminal parsed by a procedure
• call other procedures to parse sub-nonterminals, recursively
• typically written by hand

• table-driven parser
• PDA:liketable-driven FSA, plus stack to do recursive FSA

calls
• typically generated by a tool from a grammar specification

LL(k) GrammarsLL(k) Grammars
Can construct predictive parser

automatically / easily if grammar is LL(k)
 Left-to-right scan of input, Leftmost derivation
 k tokens of lookahead needed, ≥ 1

Some restrictions:
 no ambiguity (true for any parsing algorithm)
 no common prefixes of length ≥ k:

If ::= if Test then Stmts end |
if Test then Stmts else Stmts

end
 no left recursion:

E ::= E Op E | ...
 a few others

Restrictions guarantee that, given k input tokens, can always
select correct rhs to expand nonterminal Easy to do by hand in
recursive-descent parser

Eliminating common prefixesEliminating common prefixes
Can left factor common prefixes to

eliminate them
◦ create new nonterminal for different suffixes
◦ delay choice till after common prefix

 Before:
If ::= if Test then Stmts end |

if Test then Stmts else Stmts
end

 After:
If ::= if Test then Stmts IfCont
IfCont ::= end | else Stmts end

Eliminating Left RecursionEliminating Left Recursion
 Can Rewrite the grammar to eliminate

left recursion
 Before

E ::= E + T | T
T ::= T * F | F
F ::= id | ...

 After
E ::= T ECon
ECon ::= + T ECon | e
T ::= F TCon
TCon ::= * F TCon | e
F ::= id | …

Bottom Up ParsingBottom Up Parsing

Construct parse tree for input from leaves
up
◦ reducing a string of tokens to single start

symbol (inverse of deriving a string of tokens
from start symbol)

“Shift-reduce” strategy:
◦ read (“shift”) tokens until seen r.h.s. of “correct”

production
◦ reduce handle to l.h.s. nonterminal, then

continue
◦ done when all input read and reduced to start

nonterminal

LR(k)LR(k)
 LR(k) parsing
◦ Left-to-right scan of input, Rightmost derivation
◦ k tokens of lookahead

 Strictly more general than LL(k)
◦ Gets to look at whole rhs of production before deciding

what to do, not just first k tokens of rhs
◦ can handle left recursion and common prefixes fine
◦ Still as efficient as any top-down or bottom-up parsing

method
 Complex to implement
◦ need automatic tools to construct parser from grammar

LR Parsing TablesLR Parsing Tables

Construct parsing tables implementing a FSA
with a stack
• rows: states of parser
• columns: token(s) of lookahead
• entries: action of parser

• shift, goto state X
• reduce production “X ::= RHS”
• accept
• error

Algorithm to construct FSA similar to algorithm to
build DFA from NFA
• each state represents set of possible places in

parsing
LR(k) algorithm builds huge tables

LALRLALR--Look Ahead LRLook Ahead LR

LALR(k) algorithm has fewer states ==>
smaller tables
◦ less general than LR(k), but still good in

practice
◦ size of tables acceptable in practice

 k == 1 in practice
◦ most parser generators, including yacc and
jflex, are LALR(1)

Global Plan for LR(0) ParsingGlobal Plan for LR(0) Parsing

 Goal: Set up the tables for parsing an
LR(0) grammar
◦ Add S’ --> S$ to the grammar, i.e. solve the

problem for a new grammar with terminator
◦ Compute parser states by starting with state

1 containing added production, S’ --> .S$
◦ Form closures of states and shifting to

complete diagram
◦ Convert diagram to transition table for PDA
◦ Step through parse using table and stack

LR(0) Parser GenerationLR(0) Parser Generation
Example grammar:
S’ ::= S $ // always add this
production

S ::= beep | { L }
L ::= S | L ; S

 Key idea: simulate where input might be in
grammar as it reads tokens

 "Where input might be in grammar" captured by
set of items, which forms a state in the parser’s
FSA
◦ LR(0) item: lhs ::= rhs production, with dot in

rhs somewhere marking what’s been read (shifted)
so far
 LR(k) item: also add k tokens of lookahead to each item

◦ Initial item: S’ ::= . S $

ClosureClosure
Initial state is closure of initial item
 closure: if dot before non-terminal, add

all productions for non-terminal with
dot at the start
◦ "epsilon transitions"

Initial state (1):
S’::= . S $
S ::= . beep
S ::= . { L }

