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Introduction to Syntax analysis



Topics CoveredTopics Covered
 Syntax analysis
 CFG



Syntactic Syntactic AnalysisAnalysis

Syntactic analysis, or parsing, is 
the second phase of compilation: 
The token file is converted to an 
abstract syntax tree. 
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Syntactic Analysis / ParsingSyntactic Analysis / Parsing

 Goal: Convert token stream to abstract 
syntax tree

 Abstract syntax tree (AST):
◦ Captures the structural features of the program
◦ Primary data structure for remainder of 

compilation
 Three Part Plan
◦ Study how context-free grammars specify 

syntax
◦ Study algorithms for parsing / building ASTs
◦ Study the miniJava Implementation



ContextContext--free Grammarsfree Grammars
• Compromise between

• Res, can’t nest or specify recursive structure 
• General grammars, too powerful, undecidable

• Context-free grammars are a sweet spot
• Powerful enough to describe nesting, recursion
• Easy to parse; but also allow restrictions for speed

• Not perfect
• Cannot capture semantics, as in, “variable must be 

declared,” requiring later semantic pass
• Can be ambiguous

• EBNF, Extended Backus Naur Form, is popular 
notation



CFG TerminologyCFG Terminology
• Terminals -- alphabet of language defined 
by CFG

• Nonterminals -- symbols defined in terms 
of terminals and nonterminals

• Productions -- rules for how a nonterminal
(lhs) is defined in terms of a (possibly 
empty) sequence of terminals and 
nonterminals

• Recursion is allowed!
• Multiple productions allowed for a 
nonterminal, alternatives

• State symbol -- root of the defining 
languageProgram ::= Stmt

Stmt ::= if ( Expr ) then Stmt else Stmt
Stmt ::= while ( Expr ) do Stmt



EBNF Syntax of initial EBNF Syntax of initial 
MiniJavaMiniJava
Program       ::= MainClassDecl { ClassDecl } 
MainClassDecl ::= class ID {

public static void main
( String [ ] ID ) { { Stmt } }}

ClassDecl ::= class ID [ extends ID ] {
{ ClassVarDecl } { MethodDecl }

}
ClassVarDecl ::= Type ID ;
MethodDecl ::= public Type ID 

( [ Formal { , Formal } ] )
{ { Stmt } return Expr ; }

Formal        ::= Type ID 
Type          ::= int |boolean | ID



Initial Initial miniJavaminiJava [continued][continued]
Stmt ::= Type ID ;

| { {Stmt} }
| if ( Expr ) Stmt else Stmt 
| while ( Expr ) Stmt 
| System.out.println ( Expr ) ;
| ID = Expr ;

Expr ::= Expr Op Expr
| ! Expr
| Expr . ID( [ Expr { , Expr } ] )
| ID | this
| Integer | true | false
| ( Expr )

Op   ::= + | - | * | /
| < | <= | >= | > | == | != | &&



RE Specification of initial RE Specification of initial 
MiniJavaMiniJava LexLex

Program ::= (Token | Whitespace)* 
Token ::= ID | Integer | ReservedWord | Operator |

Delimiter 
ID ::= Letter (Letter | Digit)* 
Letter ::= a | ... | z | A | ... | Z
Digit ::= 0 | ... | 9
Integer ::= Digit+

ReservedWord::= class | public | static | extends |
void | int | boolean | if | else | 
while|return|true|false| this | new | String
| main | System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == | 
!= | && | !

Delimiter ::= ; | . | , | = | ( | ) | { | } | [ | ]



Derivations and Parse TreesDerivations and Parse Trees
Derivation: a sequence of expansion 

steps, beginning with a start symbol 
and leading to a sequence of 
terminals

Parsing: inverse of derivation
◦ Given a sequence of terminals (a\k\a 

tokens) want to recover the nonterminals 
representing structure

Can represent derivation as a parse 
tree, that is, the concrete syntax tree



Example GrammarExample Grammar
E  ::= E op E | - E | ( E ) | id

op ::= + | - | * | /

a    *    (   b   +    - c   )


