
Compiler DesignCompiler Design

LectureLecture--77

Introduction to Syntax analysis

Topics CoveredTopics Covered
 Syntax analysis
 CFG

Syntactic Syntactic AnalysisAnalysis

Syntactic analysis, or parsing, is
the second phase of compilation:
The token file is converted to an
abstract syntax tree.

Compiler PassesCompiler Passes
Analysis

of input program
(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

Syntactic Analysis / ParsingSyntactic Analysis / Parsing

 Goal: Convert token stream to abstract
syntax tree

 Abstract syntax tree (AST):
◦ Captures the structural features of the program
◦ Primary data structure for remainder of

compilation
 Three Part Plan
◦ Study how context-free grammars specify

syntax
◦ Study algorithms for parsing / building ASTs
◦ Study the miniJava Implementation

ContextContext--free Grammarsfree Grammars
• Compromise between

• Res, can’t nest or specify recursive structure
• General grammars, too powerful, undecidable

• Context-free grammars are a sweet spot
• Powerful enough to describe nesting, recursion
• Easy to parse; but also allow restrictions for speed

• Not perfect
• Cannot capture semantics, as in, “variable must be

declared,” requiring later semantic pass
• Can be ambiguous

• EBNF, Extended Backus Naur Form, is popular
notation

CFG TerminologyCFG Terminology
• Terminals -- alphabet of language defined
by CFG

• Nonterminals -- symbols defined in terms
of terminals and nonterminals

• Productions -- rules for how a nonterminal
(lhs) is defined in terms of a (possibly
empty) sequence of terminals and
nonterminals

• Recursion is allowed!
• Multiple productions allowed for a
nonterminal, alternatives

• State symbol -- root of the defining
languageProgram ::= Stmt

Stmt ::= if (Expr) then Stmt else Stmt
Stmt ::= while (Expr) do Stmt

EBNF Syntax of initial EBNF Syntax of initial
MiniJavaMiniJava
Program ::= MainClassDecl { ClassDecl }
MainClassDecl ::= class ID {

public static void main
(String [] ID) { { Stmt } }}

ClassDecl ::= class ID [extends ID] {
{ ClassVarDecl } { MethodDecl }

}
ClassVarDecl ::= Type ID ;
MethodDecl ::= public Type ID

([Formal { , Formal }])
{ { Stmt } return Expr ; }

Formal ::= Type ID
Type ::= int |boolean | ID

Initial Initial miniJavaminiJava [continued][continued]
Stmt ::= Type ID ;

| { {Stmt} }
| if (Expr) Stmt else Stmt
| while (Expr) Stmt
| System.out.println (Expr) ;
| ID = Expr ;

Expr ::= Expr Op Expr
| ! Expr
| Expr . ID([Expr { , Expr }])
| ID | this
| Integer | true | false
| (Expr)

Op ::= + | - | * | /
| < | <= | >= | > | == | != | &&

RE Specification of initial RE Specification of initial
MiniJavaMiniJava LexLex

Program ::= (Token | Whitespace)*
Token ::= ID | Integer | ReservedWord | Operator |

Delimiter
ID ::= Letter (Letter | Digit)*
Letter ::= a | ... | z | A | ... | Z
Digit ::= 0 | ... | 9
Integer ::= Digit+

ReservedWord::= class | public | static | extends |
void | int | boolean | if | else |
while|return|true|false| this | new | String
| main | System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == |
!= | && | !

Delimiter ::= ; | . | , | = | (|) | { | } | [|]

Derivations and Parse TreesDerivations and Parse Trees
Derivation: a sequence of expansion

steps, beginning with a start symbol
and leading to a sequence of
terminals

Parsing: inverse of derivation
◦ Given a sequence of terminals (a\k\a

tokens) want to recover the nonterminals
representing structure

Can represent derivation as a parse
tree, that is, the concrete syntax tree

Example GrammarExample Grammar
E ::= E op E | - E | (E) | id

op ::= + | - | * | /

a * (b + - c)

