Introduction

 Shift/Reduce Conflict
e Error Recovery in LR Parsing

Shift/Reduce Conflict

* We say that we cannot introduce a shift/reduce conflict during the
shrink process for the creation of the states of a LALR parser.

* Assume that we can introduce a shift/reduce conflict. In this case, a
state of LALR parser must have:

A—> o.,a and B-op.ayb
* This means that a state of the canonical LR(1) parser must have:
A— o, and B-—p.ayc
But, this state has also a shift/reduce conflict. i.e. The original
canonical LR(1) parser has a conflict.
(Reason for this, the shift operation does not depend on lookaheads)

Reduce/Reduce Conflict

e But, we may introduce a reduce/reduce conflict during
the shrink process for the creation of the states of a LALR

parser.
I,:A—>a.,a I,:A—>a.,b
B —> Bl ,b U B —> B' 1C
l,,: A— a., {a,b} =» reduce/reduce
conflict

B— B.,{b,c}

Canonical LALR(1) Collection - Example2

S-S 1g:S”— 5,8 1,:8°—>S..$ Ly L= *aR{$,=

to l743
1)S—>L=R S—.L=R$ R— WL, {$,=}
2)S >R S «R$ 2S > La=R$—toly L5 J*R, {$,=} t0 lgyg
3) L—> *R L - «*R{$,=} 2 LS L wid, {$,=} to |y
4) L — id L — «id, {$,=} , to Isy,
1S > Ra,$ N _
5)R — L R— .L$ > l51,:L — idw, {$,=}
;S —> L=sR,$ to g IS > L=Rw$ Same Cores
R— L,$
L V4R S to Igy, I, and I;
L— «id,$ 10 lazs I and I,
to |
e I, and 15
I and 1y,

lg;00 R—> L, {$,=}

LALR(1) Parsing Tables - (for Example2)

r3

r3

5

5

rl

id * = $ L
0 S5 s4 2
1 acc
2 S6 S
3 r2
4 s5 s4 8
5 r4 r4
6 | s12 | si1 10
7
8
9

no shift/reduce or
no reduce/reduce conflict

U

so, itis a LALR(1) grammar

Using Ambiguous Grammars

e All grammars used in the construction of LR-parsing tables
must be un-ambiguous.

« Can we create LR-parsing tables for ambiguous grammars ?
= Yes, but they will have conflicts.

= \WWe can resolve these conflicts in favor of one of them to
disambiguate the grammar.

= At the end, we will have again an unambiguous grammar.
 Why we want to use an ambiguous grammar?

= Some of the ambiguous grammars are much natural, and a
corresponding unambiguous grammar can be very complex.

= Usage of an ambiguous grammar may eliminate unnecessary

reductions.
* EX.
E>E+T | T
E—-E+E | E*E | (E) | id > T>T*F | F

F— (E) | id

Sets of LR(0) Items for Ambiguous Grammar

E

I E— «E

E—>
E—>
E—>
E—>

.E+E
. E*E
. (E)
.id

I E’ - E.
E—E.+E
E—E.*E

+

I E—>E+.E E_ | I;E>E+E. X,
E— .E+E E— E.+E
E— .E*E E>E.*E °
E— «(E)
E— .id
. *
EE*E'E e G ESEE.
— «Et+E 4
Es . E*E id\ * EoEE AL
£ () L E— E.*E
E— .id
ls: E — (E.)), 14E—(E).
E— E.+E
EeEﬁE\siu
|

SLR-Parsing Tables for Ambiguous Grammar
FOLLOW(E) ={$,+,*,) }

State |- has shift/reduce conflicts for symbols + and *.

Iy

when current token is +
shift = + Is right-associative
reduce =» + is left-associative

when current token is *
shift =» * has higher precedence than +
reduce =» + has higher precedence than *

SLR-Parsing Tables for AmEIQUOUS Erammar

FOLLOW(E) ={$,+,*,) }

State g has shift/reduce conflicts for symbols + and *.

E

> s > g

ly > Iy

when current token is *
shift = *is right-associative
reduce =» * is left-associative

when current token is +
shift =» + has higher precedence than *
reduce =» * has higher precedence than +

SLR-Parsing Tables for Ambiguous
Grammar

Action Goto

id | + | * () $ E
0 | s3 S2 1
1 s4 | s5 acc
2 | S3 S2 6
3 4 | rd 4 | rd
4 | s3 S2 /
5 | s3 S2 8
6 s4 | s5 s9
/ rlL | sS rr | rl
8 2 | r2 2 | r2
9 3 | r3 3 | r3

Error Recovery In LR Parsing

* An LR parser will detect an error when it consults the
parsing action table and finds an error entry. All empty
entries In the action table are error entries.

e Errors are never detected by consulting the goto table.

* An LR parser will announce error as soon as there is no
valid continuation for the scanned portion of the input.

e A canonical LR parser (LR(1) parser) will never make
even a single reduction before announcing an error.

 The SLR and LALR parsers may make several reductions
before announcing an error.

* But, all LR parsers (LR(1), LALR and SLR parsers) will
never shift an erroneous input symbol onto the stack.

Panic Mode Error Recovery In LR Parsing

e Scan down the stack until a state s with a goto on a
particular nonterminal A is found. (Get rid of everything
from the stack before this state s).

e Discard zero or more input symbols until a symbol a is
found that can legitimately follow A.

s The symbol a is simply in FOLLOW(A), but this may not
work for all situations.

e The parser stacks the nonterminal A and the state
goto|[s,A], and it resumes the normal parsing.

« This nonterminal A is normally is a basic programming
block (there can be more than one choice for A).
= stmt, expr, block, ...

Phrase-Level Error Recovery In LR Parsing

e Each empty entry in the action table is marked with a
specific error routine.

e An error routine reflects the error that the user most
likely will make in that case.

e An error routine inserts the symbols into the stack or
the input (or it deletes the symbols from the stack
and the input, or it can do both insertion and
deletion).

s missing operand
= unbalanced right parenthesis

