
Introduction

• Shift/Reduce Conflict
• Error Recovery in LR Parsing

1

Shift/Reduce Conflict
• We say that we cannot introduce a shift/reduce conflict during the

shrink process for the creation of the states of a LALR parser.
• Assume that we can introduce a shift/reduce conflict. In this case, a

state of LALR parser must have:
A .,a and B .a,b

• This means that a state of the canonical LR(1) parser must have:
A .,a and B .a,c

But, this state has also a shift/reduce conflict. i.e. The original
canonical LR(1) parser has a conflict.
(Reason for this, the shift operation does not depend on lookaheads)

2

Reduce/Reduce Conflict
• But, we may introduce a reduce/reduce conflict during

the shrink process for the creation of the states of a LALR
parser.

I1 : A  .,a I2: A  .,b
B  .,b B  .,c


I12: A  ., {a,b} reduce/reduce

conflict
B  .,{b,c}

3

Canonical LALR(1) Collection – Example2
4

S’  S
1) S  L=R
2) S  R
3) L *R
4) L  id
5) R  L

I0:S’  .S,$
S  .L=R,$
S  .R,$
L  .*R,{$,=}
L  .id, {$,=}
R  .L,$

I1:S’  S.,$

I2:S  L.=R,$
R  L.,$

I3:S  R.,$

I411:L  *.R,{$,=}
R  .L, {$,=}
L .*R, {$,=}
L  .id, {$,=}

I512:L  id., {$,=}

I6:S  L=.R,$
R  .L,$
L  .*R,$
L  .id,$

I713:L  *R., {$,=}

I810: R  L., {$,=}

I9:S  L=R.,$

to I6

to I713

to I810

to I411

to I512

to I810

to I411

to I512

to I9

S

L

L
L

R

R

id

id
id

R

*

*

*

Same Cores
I4 and I11

I5 and I12

I7 and I13

I8 and I10

LALR(1) Parsing Tables – (for Example2)

5

id * = $ S L R
0 s5 s4 1 2 3
1 acc
2 s6 r5
3 r2
4 s5 s4 8 7
5 r4 r4
6 s12 s11 10 9
7 r3 r3
8 r5 r5
9 r1

no shift/reduce or
no reduce/reduce conflict


so, it is a LALR(1) grammar

Using Ambiguous Grammars
• All grammars used in the construction of LR-parsing tables

must be un-ambiguous.
• Can we create LR-parsing tables for ambiguous grammars ?
▫ Yes, but they will have conflicts.
▫ We can resolve these conflicts in favor of one of them to

disambiguate the grammar.
▫ At the end, we will have again an unambiguous grammar.

• Why we want to use an ambiguous grammar?
▫ Some of the ambiguous grammars are much natural, and a

corresponding unambiguous grammar can be very complex.
▫ Usage of an ambiguous grammar may eliminate unnecessary

reductions.
• Ex.

E  E+T | T
E  E+E | E*E | (E) | id  T  T*F | F

F  (E) | id

6

Sets of LR(0) Items for Ambiguous Grammar
7

I0: E’  .E
E  .E+E
E  .E*E
E  .(E)
E  .id

I1: E’  E.
E  E .+E
E  E .*E

I2: E  (.E)
E  .E+E
E  .E*E
E  .(E)
E  .id

I3: E  id.

I4: E  E +.E
E  .E+E
E  .E*E
E  .(E)
E  .id

I5: E  E *.E
E  .E+E
E  .E*E
E  .(E)
E  .id

I6: E  (E.)
E  E.+E
E  E.*E

I7: E  E+E.
E  E.+E
E  E.*E

I8: E  E*E.
E  E.+E
E  E.*E

I9: E  (E).

I5

)

E

E

E

E

*

+

+

+

+

*

*

*

(

(

(
(

id

id

id
id

I4

I2

I2

I3

I3

I4

I4

I5

I5

SLR-Parsing Tables for Ambiguous Grammar
8

FOLLOW(E) = { $,+,*,) }

State I7 has shift/reduce conflicts for symbols + and *.

I0 I1 I7I4
E+E

when current token is +
shift  + is right-associative
reduce  + is left-associative

when current token is *
shift  * has higher precedence than +
reduce  + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar
9

FOLLOW(E) = { $,+,*,) }

State I8 has shift/reduce conflicts for symbols + and *.

I0 I1 I8I5
E*E

when current token is *
shift  * is right-associative
reduce  * is left-associative

when current token is +
shift  + has higher precedence than *
reduce  * has higher precedence than +

SLR-Parsing Tables for Ambiguous
Grammar

10

id + * () $ E
0 s3 s2 1
1 s4 s5 acc
2 s3 s2 6
3 r4 r4 r4 r4
4 s3 s2 7
5 s3 s2 8
6 s4 s5 s9
7 r1 s5 r1 r1
8 r2 r2 r2 r2
9 r3 r3 r3 r3

Action Goto

Error Recovery in LR Parsing
• An LR parser will detect an error when it consults the

parsing action table and finds an error entry. All empty
entries in the action table are error entries.

• Errors are never detected by consulting the goto table.
• An LR parser will announce error as soon as there is no

valid continuation for the scanned portion of the input.
• A canonical LR parser (LR(1) parser) will never make

even a single reduction before announcing an error.
• The SLR and LALR parsers may make several reductions

before announcing an error.
• But, all LR parsers (LR(1), LALR and SLR parsers) will

never shift an erroneous input symbol onto the stack.

11

Panic Mode Error Recovery in LR Parsing

• Scan down the stack until a state s with a goto on a
particular nonterminal A is found. (Get rid of everything
from the stack before this state s).

• Discard zero or more input symbols until a symbol a is
found that can legitimately follow A.
▫ The symbol a is simply in FOLLOW(A), but this may not

work for all situations.
• The parser stacks the nonterminal A and the state

goto[s,A], and it resumes the normal parsing.
• This nonterminal A is normally is a basic programming

block (there can be more than one choice for A).
▫ stmt, expr, block, ...

12

Phrase-Level Error Recovery in LR Parsing

• Each empty entry in the action table is marked with a
specific error routine.

• An error routine reflects the error that the user most
likely will make in that case.

• An error routine inserts the symbols into the stack or
the input (or it deletes the symbols from the stack
and the input, or it can do both insertion and
deletion).
▫ missing operand
▫ unbalanced right parenthesis

13

