
Compiler DesignCompiler Design

LectureLecture--1414

Constructing the Parsing Table I: First
and Follow

2

Topics Covered Topics Covered
 Left factoring of a grammar
 Predictive Parser
 Constructing the Parsing Table I: First

and Follow

3

LeftLeft--Factoring a Grammar II Factoring a Grammar II
 Here is the procedure used to left-factor a

grammar:
◦ For each non-terminal A, find the longest prefix
α common to two or more of its alternatives.
◦ Replace all the A productions:

A  αβ1 | αβ2 … | αβn | γ
(where γ represents all alternatives that do not

begin with α)
◦ By:

A  α A’ | γ
A’  β1 | β2 | … | βn

4

LeftLeft--Factoring a Grammar IIIFactoring a Grammar III
 Here is an example of a common grammar that

needs left factoring:

S  iEtS | iEtSeS | a
E  b

(i stands for “if”; t stands for “then”; and e stands for “else”)

 Left factored, this grammar becomes:

S  iEtSS’ | a
S’  eS | є
E  b

5

Predictive Parser: Details Predictive Parser: Details
 The key problem during predictive parsing is that

of determining the production to be applied for a
non-terminal.

 This is done by using a parsing table.

 A parsing table is a two-dimensional array M[A,a]
where A is a non-terminal, and a is a terminal or
the symbol $, menaing “end of input string”.

 The other inputs of a predictive parser are:
◦ The input buffer, which contains the string to be

parsed followed by $.
◦ The stack which contains a sequence of grammar

symbols with, initially, $S (end of input string and start
symbol) in it.

6

Predictive Parser: Informal Predictive Parser: Informal
ProcedureProcedure
 The predictive parser considers X, the

symbol on top of the stack, and a, the
current input symbol. It uses, M, the parsing
table.
◦ If X=a=$  halt and return success
◦ If X=a≠$  pop X off the stack and advance

input pointer to the next symbol
◦ If X is a non-terminal  Check M[X,a]
 If the entry is a production rule, then replace X on the

stack by the Right Hand Side of the production
 If the entry is blank, then halt and return failure

7

Predictive Parser: Predictive Parser:
An ExampleAn Example

id + * () $
E E

TE’
E
TE’

E’ E’
+
TE’

E’
є

E’
є

T T
FT’

T
FT’

T’ T’
є

T’
*
FT’

T’
є

T’
є

F F
id

F
(E)

Stack Input Output
$E id+id*id$
$E’T id+id*id$ E  TE’
$E’T’F id+id*id$ T  FT’
$E’T’id id+id*id$ F  id
$E’T’ +id*id$
$E’ +id*id$ T’  є
$E’T+ +id*id$ E’  +TE’
$E’T id*id$
$E’T’F id*id$ T  FT’
$E’T’id id*id$ F  id
$E’T’ *id$
$E’T’F* *id$ T’  *FT’
$E’T’F id$
$E’T’id id$ F  id
$E’T’ $
$E’ $ T’  є
$ $ E’  є

8

Parsing Table
Algorithm Trace 

Constructing the Parsing Table I: Constructing the Parsing Table I:
First and Follow First and Follow
 First(α) is the set of terminals that begin the

strings derived from α. Follow(A) is the set
of terminals a that can appear to the right of
A. First and Follow are used in the
construction of the parsing table.

 Computing First:
◦ If X is a terminal, then First(X) is {X}
◦ If X  є is a production, then add є to First(X)
◦ If X is a non-terminal and X  Y1 Y2 … Yk is a

production, then place a in First(X) if for some i, a
is in First(Yi) and є is in all of First(Y1)…First(Yi-
1)

9

Constructing the Parsing Table II: Constructing the Parsing Table II:
First and Follow First and Follow
 Computing Follow:
◦ Place $ in Follow(S), where S is the start symbol and

$ is the input right endmarker.
◦ If there is a production A  αBβ, then everything in

First(β) except for є is placed in Follow(B).
◦ If there is a production A  αB, or a production A 
αBβ where First(β) contains є, then everything in
Follow(A) is in Follow(B)

Example: E  TE’ E’  +TE’ | є
T  FT’ T’  *FT’ | є

F  (E) | id

First(E) = First(T) = First(F) = {(, id} First(E’) = {+, є}
First(T’) = {*, є}

Follow(E) = Follow(E’) = {),$}
Follow(F)={+,*,),$}

Follow(T) = Follow(T’) = {+,),$} 10

Constructing the Parsing Constructing the Parsing
Table IIITable III
 Algorithm for constructing a predictive

parsing table:
1. For each production A  α of the grammar, do

steps 2 and 3
2. For each terminal a in First(α), add A  α to

M[A, a]
3. If є is in First(α), add A  α to M[A, b] for each

terminal b in Follow(A). If є is in First(α), add A
 α to M[A,b] for each terminal b in Follow(A).
If є is in First(α) and $ is in Follow(A), add A 
α to M[A, $].

4. Make each undefined entry of M be an error.

11

LL(1) GrammarsLL(1) Grammars
 A grammar whose parsing table has no multiply-

defined entries is said to be LL(1)
 No ambiguous or left-recursive grammar can be

LL(1).
 A grammar G is LL(1) iff whenever A  α | β are

two distinct productions of G, then the following
conditions hold:
◦ For no terminal a do both α and β derive strings

beginning with a
◦ At most one of α and β can derive the empty string
◦ If β can (directly or indirectly) derive є, then α does not

derive any string beginning with a terminal in Follow(A).

12

