Compiler Design

Lecture-14

Constructing the Parsing Table I: First
and Follow

Topics Covered

o Left factoring of a grammar
» Predictive Parser

e Constructing the Parsing Table I: First
and Follow

Left-Factoring a Grammatr I

» Here Is the procedure used to left-factor a
grammar:

- For each non-terminal A, find the longest prefix
o common to two or more of its alternatives.

- Replace all the A productions:
A2>aBfl|aB2...|aBfn]|y
(where y represents all alternatives that do not
begin with o)
> By:
A> oAy
A>BLIB2]| ... | BN

Left-Factoring a Grammar |l

» Here is an example of a common grammar that
needs left factoring:

S 2 IEtS | IEtSeS | a
E-2>D

(1 stands for “if”; t stands for “then”; and e stands for “else”)

o Left factored, this grammar becomes:

S 2> IEtSS’ | a
S >eS|e
E->Db

Predictive Parser: Detalls

The key problem during predictive parsing is that
of determining the production to be applied for a
non-terminal.

This Is done by using a parsing table.

A parsing table Is a two-dimensional array MHA,a]
where A'is a non-terminal, and a is a terminal or
the symbol $, menaing “end of input string”.

The other inputs of a predictive parser are:

> The input buffer, which contains the string to be
parsed followed by $.

> The stack which contains a sequence of grammar
symbols with, initially, $S (end of input string and start
symbol) in it.

Predictive Parser: Informal

Procedure

» The predictive parser considers X, the
symbol on top of the stack, and a, the
current input symbol. It uses, M, the parsing
table.

o |f X=a=%$ =» halt and return success

o If X=a#$ =» pop X off the stack and advance
Input pointer to the next symbol

o If X'i1s a non-terminal =» Check M[X,a]

If the entry is a production rule, then replace X on the
stack by the Right Hand Side of the production

If the entry is blank, then halt and return failure

Stack Input Output
Predictive Parsernst d+id"id$
A E I SE'T id+id*id$ E->TE
n Example SETF id+id4id$ [T> FT
id | + |~ ()]s $ET'id |d+|-d |-d$ F->id
E | ES N SE'T +id*id$
TE' TE’ $E’ +Hd*id$ | T'>e
E’ E’ E | E $ET+ +id*id$ |E > +TFE’
>+ € | € $E'T id*id$
TE SE'TF id*id$ T->FT
T |12 ™ $E'T'id io%id$ | F > id
FT’ FT’ :
SE'T *Id$
T T T T T :
Se | 3 Selse| [SETF Nd$ | T > FT
FT SE'TF id$
E | F> S $SE'T'id id$ F->id
id (E) SE'T $
Parsing Table $E’ $ T>e¢
Algorithm Trace 2> $ $ |EE>e

Constructing the Parsing Table I:

First and Follow

 First(a) Is the set of terminals that begin the
strings derived from a. Follow(A) is the set
of terminals a that can appear to the right of
A. First and Follow are used in the
construction of the parsing table.

» Computing First:
o If X'Is a terminal, then First(X) is {X}
o If X = € is a production, then add e to First(X)

o If XIsanon-terminaland X 2> Y1Y2 ... Ykis a
production, then place a in First(X) if for some i, a
IS In First(Yi) and € is in all of First(Y1)...First(Yi-

1)

Constructing the Parsing Table II:

First and Follow

o« Computing Follow:

Plac In Follow(S here S Is the start symbol and
Fist é$|nput rlgh{ e?ngv arker. 4

o |f there Is a production A -2 n everything in
First(pB) except ore?s place(c)l(Br?’F&?ow? <§y J

o ft er 1S alg tion A 2 aoB, or a I‘OdlﬁthﬂA%
Ir F@? ontains e, then everything in
Fo ow SIS In ?

Example: E > TFE’ E'> +TE’ | €
T2>FT T -2>*T | e
F->(E)|id

First(E) = First(T) = First(F) = {(, id} First(E) = {+, €}

First(T’) = {*, €}

SRR ERIgE) =09

FoIIow(T) = Follow(T") = {+,),$}

Constructing the Parsing
Table Il

» Algorithm for constructing a predictive
parsing table:

1. For each production A - a of the grammar, do
steps 2 and 3

2. For each terminal a in First(a), add A 2 a to
MIA, a]

3. Ifeisin First(a), add A - o to M[A, b] for each
terminal b in Follow(A). If € is in First(a), add A
- a to M[A,b] for each terminal b in Follow(A).
If € is in First(a) and $ is in Follow(A), add A 2
o to M[A, $].

4. Make each undefined entry of M be an error.

LL(1) Grammars

» A grammar whose parsing table has no multiply-
defined entries is said to be LL(1)

 No ambiguous or left-recursive grammar can be
LL(1).

e Agrammar G is LL(1) iff whenever A= a | B are
two distinct productions of G, then the following
conditions hold:
> For no terminal a do both o and B derive strings

beginning with a
- At most one of a and B can derive the empty string

o If B can (directly or indirectly) derive €, then o does not
derive any string beginning with a terminal in Follow(A).

