
Compiler DesignCompiler Design

LectureLecture--1313

Predictive Parsing Algorithms

2

Topics CoveredTopics Covered
 Predictive Parser
 Left Recursive Grammars
 Constructing the Parsing Table
 LR Parsing
 SLR Parsing

3

Predictive Parser: Predictive Parser:
Generalities Generalities
 In many cases, by carefully writing a

grammar—eliminating left recursion
from it and left factoring the resulting
grammar—we can obtain a grammar
that can be parsed by a recursive-
descent parser that needs no
backtracking.

 Such parsers are called predictive
parsers.

4

Left Recursive Grammars ILeft Recursive Grammars I
 A grammar is left recursive if it has a

nonterminal A such that there is a derivation
A Aα, for some string α

 Top-down parsers can loop forever when
facing a left-recursive rules. Therefore, such
rules need to be eliminated.

 A left-recursive rule such as A A α | β
can be eliminated by replacing it by:
◦ A β R where R is a new non-

terminal
◦ R α R | є and є is the empty string

 The new grammar is right-recursive

5

LeftLeft--Recursive Grammars IIRecursive Grammars II
 The general procedure for removing direct left

recursion—recursion that occurs in one rule—is the
following:
◦ Group the A-rules as

A Aα1 |… | Aαm | β1 | β2 |…| βn
where none of the β’s begins with A
◦ Replace the original A-rules with
 A β1A’ | β2 A’ | … | βn A’
 A’ α1 A’ | α2 A’ | … | αm A’

 This procedure will not eliminate indirect left recursion
of the kind:
◦ A BaA
◦ B Ab [Another procedure exists that is not given

here]
 Direct or Indirect Left-Recursion is problematic for all

top-down parsers. However, it is not a problem for
bottom-up parsing algorithms. 6

LeftLeft--Recursive Grammars IIIRecursive Grammars III
 Here is an example of a (directly) left-

recursive grammar:
E E + T | T

T T * F | F
F (E) | id

 This grammar can be re-written as the
following non left-recursive grammar:

E T E’ E’ + TE’ | є
T F T’ T’ * F T’ | є

F (E) | id

7

LeftLeft--Factoring a Grammar IFactoring a Grammar I
 Left Recursion is not the only trait that

disallows top-down parsing.
 Another is whether the parser can always

choose the correct Right Hand Side on the
basis of the next token of input, using only
the first token generated by the leftmost
nonterminal in the current derivation.

 To ensure that this is possible, we need to
left-factor the non left-recursive grammar
generated in the previous step.

8

LeftLeft--Factoring a Grammar II Factoring a Grammar II
 Here is the procedure used to left-factor a

grammar:
◦ For each non-terminal A, find the longest prefix α

common to two or more of its alternatives.
◦ Replace all the A productions:

A αβ1 | αβ2 … | αβn | γ
(where γ represents all alternatives that do not

begin with α)
◦ By:

A α A’ | γ
A’ β1 | β2 | … | βn

9

LeftLeft--Factoring a Grammar IIIFactoring a Grammar III
 Here is an example of a common grammar that

needs left factoring:

S iEtS | iEtSeS | a
E b

(i stands for “if”; t stands for “then”; and e stands for “else”)

 Left factored, this grammar becomes:

S iEtSS’ | a
S’ eS | є
E b

10

Predictive Parser: Details Predictive Parser: Details
 The key problem during predictive parsing is that

of determining the production to be applied for a
non-terminal.

 This is done by using a parsing table.

 A parsing table is a two-dimensional array M[A,a]
where A is a non-terminal, and a is a terminal or
the symbol $, menaing “end of input string”.

 The other inputs of a predictive parser are:
◦ The input buffer, which contains the string to be

parsed followed by $.
◦ The stack which contains a sequence of grammar

symbols with, initially, $S (end of input string and start
symbol) in it.

11

Predictive Parser: Informal Predictive Parser: Informal
ProcedureProcedure
 The predictive parser considers X, the

symbol on top of the stack, and a, the
current input symbol. It uses, M, the parsing
table.
◦ If X=a=$ halt and return success
◦ If X=a≠$ pop X off the stack and advance

input pointer to the next symbol
◦ If X is a non-terminal Check M[X,a]
 If the entry is a production rule, then replace X on the

stack by the Right Hand Side of the production
 If the entry is blank, then halt and return failure

12

Predictive Parser: Predictive Parser:
An ExampleAn Example

id + * () $
E E

TE’
E
TE’

E’ E’
+
TE’

E’
є

E’
є

T T
FT’

T
FT’

T’ T’
є

T’
*
FT’

T’
є

T’
є

F F
id

F
(E)

Stack Input Output
$E id+id*id$
$E’T id+id*id$ E TE’
$E’T’F id+id*id$ T FT’
$E’T’id id+id*id$ F id
$E’T’ +id*id$
$E’ +id*id$ T’ є
$E’T+ +id*id$ E’ +TE’
$E’T id*id$
$E’T’F id*id$ T FT’
$E’T’id id*id$ F id
$E’T’ *id$
$E’T’F* *id$ T’ *FT’
$E’T’F id$
$E’T’id id$ F id
$E’T’ $
$E’ $ T’ є
$ $ E’ є

13

Parsing Table
Algorithm Trace

Constructing the Parsing Table I: Constructing the Parsing Table I:
First and Follow First and Follow
 First(α) is the set of terminals that begin the

strings derived from α. Follow(A) is the set
of terminals a that can appear to the right of
A. First and Follow are used in the
construction of the parsing table.

 Computing First:
◦ If X is a terminal, then First(X) is {X}
◦ If X є is a production, then add є to First(X)
◦ If X is a non-terminal and X Y1 Y2 … Yk is a

production, then place a in First(X) if for some i, a
is in First(Yi) and є is in all of First(Y1)…First(Yi-
1)

14

Constructing the Parsing Table II: Constructing the Parsing Table II:
First and Follow First and Follow
 Computing Follow:
◦ Place $ in Follow(S), where S is the start symbol and $

is the input right endmarker.
◦ If there is a production A αBβ, then everything in

First(β) except for є is placed in Follow(B).
◦ If there is a production A αB, or a production A
αBβ where First(β) contains є, then everything in
Follow(A) is in Follow(B)

Example: E TE’ E’ +TE’ | є
T FT’ T’ *FT’ | є

F (E) | id

First(E) = First(T) = First(F) = {(, id} First(E’) = {+, є}
First(T’) = {*, є}

Follow(E) = Follow(E’) = {),$}
Follow(F)={+,*,),$}

Follow(T) = Follow(T’) = {+,),$}
15

Constructing the Parsing Constructing the Parsing
Table IIITable III
 Algorithm for constructing a predictive

parsing table:
1. For each production A α of the grammar, do

steps 2 and 3
2. For each terminal a in First(α), add A α to

M[A, a]
3. If є is in First(α), add A α to M[A, b] for each

terminal b in Follow(A). If є is in First(α), add A
 α to M[A,b] for each terminal b in Follow(A).
If є is in First(α) and $ is in Follow(A), add A
α to M[A, $].

4. Make each undefined entry of M be an error.

16

LL(1) GrammarsLL(1) Grammars
 A grammar whose parsing table has no multiply-

defined entries is said to be LL(1)
 No ambiguous or left-recursive grammar can be

LL(1).
 A grammar G is LL(1) iff whenever A α | β are

two distinct productions of G, then the following
conditions hold:
◦ For no terminal a do both α and β derive strings

beginning with a
◦ At most one of α and β can derive the empty string
◦ If β can (directly or indirectly) derive є, then α does not

derive any string beginning with a terminal in Follow(A).

17

Part IIPart II
BottomBottom--Up Parsing Up Parsing

 There are different approaches to bottom-up
parsing. One of them is called Shift-Reduce
parsing, which in turns has a number of different
instantiations.

 Operator-precedence parsing is one such
method as is LR parsing which is much more
general.

 In this course, we will be focusing on LR parsing.
LR Parsing itself takes three forms: Simple LR-
Parsing (SLR) a simple but limited version of LR-
Parsing; Canonical LR parsing, the most
powerful, but most expensive version; and LALR
which is intermediate in cost and power. Our

18

LR Parsing: AdvantagesLR Parsing: Advantages
 LR Parsers can recognize any language for

which a context free grammar can be
written.

 LR Parsing is the most general non-
backtracking shift-reduce method known,
yet it is as efficient as ither shift-reduce
approaches

 The class of grammars that can be parsed
by an LR parser is a proper superset of that
that can be parsed by a predictive parser.

 An LR-parser can detect a syntactic error
as soon as it is possible to do so on a left-
to-right scan of the input. 19

LRLR--Parsing: Parsing:
Drawback/SolutionDrawback/Solution
 The main drawback of LR parsing is that it is

too much work to construct an LR parser by
hand for a typical programming language
grammar.

 Fortunately, specialized tools to construct LR
parsers automatically have been designed.

 With such tools, a user can write a context-free
grammar and have a parser generator
automatically produce a parser for that
grammar.

 An example of such a tool is Yacc “Yet Another
Compiler-Compiler” 20

LR Parsing Algorithms: LR Parsing Algorithms:
Details IDetails I
 An LR parser consists of an input, output, a

stack, a driver program and a parsing table
that has two parts: action and goto.

 The driver program is the same for all LR
Parsers. Only the parsing table changes
from one parser to the other.

 The program uses the stack to store a
string of the form s0X1s1X2…Xmsm, where smis the top of the stack. The Sk‘s are state
symbols while the Xi‘s are grammar
symbols. Together state and grammar
symbols determine a shift-reduce parsing
decision.

21

LR Parsing Algorithms: LR Parsing Algorithms:
Details IIDetails II
 The parsing table consists of two parts: a

parsing action function and a goto function.

 The LR parsing program determines sm,
the state on top of the stack and ai, the
current input. It then consults action[sm, ai]
which can take one of four values:

Shift
Reduce
Accept
Error

22

LR Parsing Algorithms: LR Parsing Algorithms:
Details IIIDetails III
 If action[sm, ai] = Shift s, where s is a state,

then the parser pushes ai and s on the stack.

 If action[sm, ai] = Reduce A β, then ai and sm
are replaced by A, and, if s was the state
appearing below ai in the stack, then goto[s, A]
is consulted and the state it stores is pushed
onto the stack.

 If action[sm, ai] = Accept, parsing is completed

 If action[sm, ai] = Error, then the parser
discovered an error.

23

LR Parsing Example: The LR Parsing Example: The
GrammarGrammar
1. E E + T
2. E T
3. T T * F
4. T F
5. F (E)
6. F id

24

LRLR--Parser Example: The Parsing Parser Example: The Parsing
TableTable

State Action Goto
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 Acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 R1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5 25

LRLR--Parser Example: Parsing Parser Example: Parsing
TraceTrace

Stack Input Action
(1) 0 id * id + id $ Shift
(2) 0 id 5 * id + id $ Reduce by F id
(3) 0 F 3 * id + id $ Reduce by T F
(4) 0 T 2 * id + id $ Shift
(5) 0 T 2 * 7 id + id $ Shift
(6) 0 T 2 * 7 id 5 + id $ Reduce by F id
(7) 0 T 2 * 7 F 10 + id $ Reduce by T T * F
(8) 0 T 2 + id $ Reduce by E T
(9) 0 E 1 + id $ Shift
(10) 0 E 1 + 6 id $ Shift
(11) 0 E 1 + 6 id 5 $ Reduce by F id
(12) 0 E 1 + 6 F 3 $ Reduce by T F
(13) 0 E 1 + 6 T 9 $ E E + T
(14) 0 E 1 $ Accept 26

SLR Parsing SLR Parsing
 Definition: An LR(0) item of a grammar G is a

production of G with a dot at some position of the
right side.

 Example: A XYZ yields the four following
items:
◦ A .XYZ
◦ A X.YZ
◦ A XY.Z
◦ A XYZ.

 The production A є generates only one item, A
 .

 Intuitively, an item indicates how much of a
production we have seen at a given point in the
parsing process. 27

SLR ParsingSLR Parsing
 To create an SLR Parsing table, we define

three new elements:

◦ An augmented grammar for G, the initial
grammar. If S is the start symbol of G, we
add the production S’ .S . The purpose
of this new starting production is to
indicate to the parser when it should stop
parsing and accept the input.
◦ The closure operation
◦ The goto function

28

SLR Parsing:SLR Parsing:
The Closure OperationThe Closure Operation
 If I is a set of items for a grammar G,

then closure(I) is the set of items
constructed from I by the two rules:

1. Initially, every item in I is added to
closure(I)

2. If A α . B β is in closure(I) and B γ
is a production, then add the item B .
γ to I, if it is not already there. We apply
this rule until no more new items can be
added to closure(I).

29

SLR Parsing:SLR Parsing:
The Closure Operation The Closure Operation –– Example Example

Original grammar Augmented
grammar

0. E’ E
 E E + T 1. E E +

T
 E T 2. E T
 T T * F 3. E T *

F
 T F 4. T F
 F (E) 5. F (E)
 F id 6. F id

30

Let I = {[E’ E]} then Closure(I)=
{ [E’ .E], [E .E + T],
[E .T], [E .T*F],
[T .F], [F .(E)]
[F .id] }

SLR Parsing:SLR Parsing:
The Goto OperationThe Goto Operation
 Goto(I,X), where I is a set of items and X is

a grammar symbol, is defined as the
closure of the set of all items [A αX.β]
such that [A α.Xβ] is in I.

 Example: If I is the set of two items {E’
E.], [E E.+T]}, then goto(I, +) consists of

E E + .T
T .T * F
T .F
F .(E)
F .id

31

SLR Parsing:SLR Parsing:
SetsSets--ofof--Items ConstructionItems Construction
Procedure items(G’)

C = {Closure({[S’ .S]})}
Repeat

For each set of items I in C and each
grammar symbol X such that got(I,X)
is not empty and not in C do

add goto(I,X) to C
Until no more sets of items can be added

to C

32

Example: The Canonical LR(0) Example: The Canonical LR(0)
collection for grammar Gcollection for grammar G
I0: E’ .E I4: F (.E) I7: T T * .F

E .E + T E .E + T F .(E)
E .T E .T F .id
T .T * F T .T * F I8: F (E.)
T .F T .F E E.+T
F .(E) F .(E) I9: E E + T.
F .id F .id T T.* F

I1: E’ E. I5: F id. I10: T T*F.
E E.+T I6: E E+.T I11: F (E).

I2: E T. T .T*F
T T. * F T .F

I3: T F. F .(E)
F .id

33

Constructing an SLR Parsing Constructing an SLR Parsing
Table Table
1. Construct C={I0, I1, … In} the collection of

sets of LR(0) items for G’
2. State i is constructed from Ii. The parsing

actions for state i are determined as
follows:

a. If [A α.aβ] is in Ii and goto(Ii,a) = Ij, then set
action[i,a] to “shift j”. Here, a must be a
terminal.

b. If [A α.] is in Ii, then set action[i, a] to
“reduce A α” for all a in Follow(A); here A
may not be S’.

c. If [S’ S.] is in Ii, then set action[i,$] to
“accept”

If any conflicting actions are generated by the
above rules, we say that the grammar is not
SLR(1). The algorithm then fails to produce a
parser.

34

Constructing an SLR Parsing Constructing an SLR Parsing
Table (cont’d)Table (cont’d)
3. The goto transitions for state i are

constructed for all nonterminals A using
the rule: If goto(Ii, A) = Ij, then goto[i, A] = j.

4. All entries not defined by rules (2) and (3)
are made “error”.

5. The initial state of the parser is the one
constructed from the set of items
containing [S’ S].

See example in class

35

