Compiler Design

Lecture-11

Introduction to Abstract Syntax Tree

Topics Covered

» Abstract Syntax Trees
» Precedence Declarations
 Error Handling

Abstract Syntax Trees

The parser’s output is an abstract syntax tree
(AST) representing the grammatical
structure of the parsed input

» ASTs represent only semantically
meaningful aspects of input program, unlike
concrete syntax trees which record the
complete textual form of the input

> There’s no need to record keywords or
punctuation like (), ;, else

> The rest of compiler only cares about the
abstract structure

AST Node Classes

Each node in an AST Is an instance of an
AST class

o I'FStmt, AssignStmt, AddExpr, VarDecl,
etc.

Each AST class declares its own instance
variables holding its AST subtrees

o I'¥Stmt has testExpr, thenStmt, and
elseStmt

- AssignStmt has IhsVar and rhsgexpr
- AddEXpr has arglExpr and arg2expr
- VarDecl has typeExpr and varName

AST Class Hierarchy

AST classes are organized into an inheritance
hierarchy based on commonalities of
meaning and structure

« Each "abstract non-terminal” that has multiple
alternative concrete forms will have an
abstract class that’s the superclass of the
various alternative forms
o Stmt is abstract superclass of 1fStmt,

AssignStmt, etc.
o EXpr is abstract superclass of AddExpr,
VarExpr, etc.

- Type is abstract superclass of IntType,
ClassType, etc.

AST Extensions For Project

New variable declarations:

- StaticVarDecl
New types:

> DoubleType

o ArrayType
New/changed statements:

o 1FStmt can omit else branch

o ForStmt

- BreakStmt

o ArrayAssignStmt
New expressions:

- DoubleLiteralExpr
OreExpr
ArrayLookupExpr
ArraylLengthExpr
ArrayNewEXxpr

O

O

O

O

Automatic Parser Generation In
MiniJava

We use the CUP tool to automatically create a parser
from a specification file, Parser/mini java.cup

The MiniJava Makefile automatically rebuilds the
parser whenever its specification file changes

A CUP file has several sections:

o

o

o

Introductory declarations included with the generated
parser

tdeclarations of the terminals and nonterminals with their
ypes

The AST node or other value returned when finished
parsing that nonterminal or terminal

precedence declarations
productions + actions

Terminal and Nonterminal
Declarations
Terminal declarations we saw before:

/* reserved words: */
terminal CLASS, PUBLIC, STATIC, EXTENDS;

/* tokens with values: */
terminal String IDENTIFIER;
terminal Integer INT_LITERAL;

Nonterminals are similar:

nonterminal Program Program;

nonterminal MainClassDecl MainClassDecl;
nonterminal List/*<...>*/ ClassDecls;
nonterminal RegularClassDecl ClassDecl;

nonterminal List/*<Stmt>*/ Stmts;
nonterminal Stmt Stmt;

nonterminal List/*<Expr>*/ EXprs;
nonterminal List/*<Expr>*/ MoreExprs;
nonterminal Expr EXxpr;

nonterminal String ldentifier;

Precedence Declarations

Can specify precedence and associativity of operators
> equal precedence in a single declaration
> lowest precedence textually first
o specify left, right, or nonassoc with each declaration

Examples:
precedence
precedence

precedence

precedence
precedence
precedence
precedence

left AND AND;

nonassoc EQUALS EQUALS,
XCLAIM_EQUALS;

left LESSTHAN, LESSEQUAL,
GREATEREQUAL, GREATERTHAN;

left PLUS, MINUS;
left STAR, SLASH;
left EXCLAIM;
left PERIOD;

Productions
All of the form:

LHS :-:= RHS1 {: Java code 1 :}
| RHS2 {: Java code 2 :}

I éﬁén {: Qava code n :}; _ _
Can label symbols in RHS with:var suffix to refer to its
result value in Java code

varleft is setto line in input where var symbol was

Eg Expr :I:= Expr:argl PLUS Expr:arg2
{: RESULT = new AddExpr(argl,arg2,arglleft);:}

| INT LITERAL:value{: RESULT = new IntLiteralExpr(
value.intvalue(),valueleft);:}

| Expr:zrcvr PERIOD ldentifier:message OPEN_ PAREN
Exprs:args CLOSE_PAREN

{: RESULT = new MethodCallExpr(
rcvr,message,args, rcvrieft);:}

Error Handling

How to handle syntax error?
Option 1: quit compilation

+ easy

- Inconvenient for programmer

Option 2: error recovery
+ try to catch as many errors as possible on one
compile
- difficult to avoid streams of spurious errors
Option 3: error correction
+ fix syntax errors as part of compilation
- hard!!

Panic Mode Error Recovery

When finding a syntax error, skip tokens until reaching a
“landmark
landmarks in MiniJava: ;,), }
once a landmark is found, hope to have gotten back on track
In top-down parser, maintain set of landmark tokens as

recursive descent proceeds
landmarks selected from terminals later in production
as parsing proceeds, set of landmarks will change, depending on the
parsing context
In bottom-up parser, can add special error nonterminals,

followed by landmarks
if syntax error, then will skip tokens till seeing landmark, then reduce
and continue normally

L] Eg Stmt ::

Expr ::

. | error ; | { error }
- | C error)

