
Compiler DesignCompiler Design

LectureLecture--1111

Introduction to Abstract Syntax Tree

Topics CoveredTopics Covered
 Abstract Syntax Trees
 Precedence Declarations
 Error Handling

Abstract Syntax TreesAbstract Syntax Trees

The parser’s output is an abstract syntax tree
(AST) representing the grammatical
structure of the parsed input

 ASTs represent only semantically
meaningful aspects of input program, unlike
concrete syntax trees which record the
complete textual form of the input
◦ There’s no need to record keywords or

punctuation like (), ;, else
◦ The rest of compiler only cares about the

abstract structure

AST Node ClassesAST Node Classes
Each node in an AST is an instance of an

AST class
◦ IfStmt, AssignStmt, AddExpr, VarDecl,

etc.

Each AST class declares its own instance
variables holding its AST subtrees
◦ IfStmt has testExpr, thenStmt, and
elseStmt
◦ AssignStmt has lhsVar and rhsExpr
◦ AddExpr has arg1Expr and arg2Expr
◦ VarDecl has typeExpr and varName

AST Class HierarchyAST Class Hierarchy
AST classes are organized into an inheritance

hierarchy based on commonalities of
meaning and structure

 Each "abstract non-terminal" that has multiple
alternative concrete forms will have an
abstract class that’s the superclass of the
various alternative forms
◦ Stmt is abstract superclass of IfStmt,
AssignStmt, etc.
◦ Expr is abstract superclass of AddExpr,
VarExpr, etc.
◦ Type is abstract superclass of IntType,
ClassType, etc.

AST Extensions For ProjectAST Extensions For Project
New variable declarations:
◦ StaticVarDecl

New types:
◦ DoubleType
◦ ArrayType

New/changed statements:
◦ IfStmt can omit else branch
◦ ForStmt
◦ BreakStmt
◦ ArrayAssignStmt

New expressions:
◦ DoubleLiteralExpr
◦ OrExpr
◦ ArrayLookupExpr
◦ ArrayLengthExpr
◦ ArrayNewExpr

Automatic Parser Generation in Automatic Parser Generation in
MiniJavaMiniJava

We use the CUP tool to automatically create a parser
from a specification file, Parser/minijava.cup

The MiniJava Makefile automatically rebuilds the
parser whenever its specification file changes

A CUP file has several sections:
◦ introductory declarations included with the generated

parser
◦ declarations of the terminals and nonterminals with their

types
◦ The AST node or other value returned when finished

parsing that nonterminal or terminal
◦ precedence declarations
◦ productions + actions

Terminal and Terminal and NonterminalNonterminal
DeclarationsDeclarations

Terminal declarations we saw before:
/* reserved words: */
terminal CLASS, PUBLIC, STATIC, EXTENDS;
...
/* tokens with values: */
terminal String IDENTIFIER;
terminal Integer INT_LITERAL;

Nonterminals are similar:
nonterminal Program Program;
nonterminal MainClassDecl MainClassDecl;
nonterminal List/*<...>*/ ClassDecls;
nonterminal RegularClassDecl ClassDecl;
...
nonterminal List/*<Stmt>*/ Stmts;
nonterminal Stmt Stmt;
nonterminal List/*<Expr>*/ Exprs;
nonterminal List/*<Expr>*/ MoreExprs;
nonterminal Expr Expr;
nonterminal String Identifier;

Precedence DeclarationsPrecedence Declarations
Can specify precedence and associativity of operators
◦ equal precedence in a single declaration
◦ lowest precedence textually first
◦ specify left, right, or nonassoc with each declaration

Examples:
precedence left AND_AND;
precedence nonassoc EQUALS_EQUALS,

EXCLAIM_EQUALS;
precedence left LESSTHAN, LESSEQUAL,

GREATEREQUAL, GREATERTHAN;
precedence left PLUS, MINUS;
precedence left STAR, SLASH;
precedence left EXCLAIM;
precedence left PERIOD;

ProductionsProductions
All of the form:

LHS ::= RHS1 {: Java code 1 :}
| RHS2 {: Java code 2 :}
| ...
| RHSn {: Java code n :};

Can label symbols in RHS with:var suffix to refer to its
result value in Java code
 varleft is set to line in input where var symbol was

E.g.: Expr ::= Expr:arg1 PLUS Expr:arg2

{: RESULT = new AddExpr(arg1,arg2,arg1left);:}
| INT_LITERAL:value{: RESULT = new IntLiteralExpr(
value.intValue(),valueleft);:}

| Expr:rcvr PERIOD Identifier:message OPEN_PAREN
Exprs:args CLOSE_PAREN

{: RESULT = new MethodCallExpr(
rcvr,message,args,rcvrleft);:}

| ... ;

Error HandlingError Handling
How to handle syntax error?
Option 1: quit compilation

+ easy
- inconvenient for programmer

Option 2: error recovery
+ try to catch as many errors as possible on one

compile
- difficult to avoid streams of spurious errors

Option 3: error correction
+ fix syntax errors as part of compilation
- hard!!

Panic Mode Error RecoveryPanic Mode Error Recovery
When finding a syntax error, skip tokens until reaching a

“landmark”
 landmarks in MiniJava: ;,), }
 once a landmark is found, hope to have gotten back on track

In top-down parser, maintain set of landmark tokens as
recursive descent proceeds

 landmarks selected from terminals later in production
 as parsing proceeds, set of landmarks will change, depending on the

parsing context
In bottom-up parser, can add special error nonterminals,

followed by landmarks
 if syntax error, then will skip tokens till seeing landmark, then reduce

and continue normally
 E.g. Stmt ::= ... | error ; | { error }

Expr ::= ... | (error)

