
Compiler DesignCompiler Design

LectureLecture--1111

Introduction to Abstract Syntax Tree

Topics CoveredTopics Covered
 Abstract Syntax Trees
 Precedence Declarations
 Error Handling

Abstract Syntax TreesAbstract Syntax Trees

The parser’s output is an abstract syntax tree
(AST) representing the grammatical
structure of the parsed input

 ASTs represent only semantically
meaningful aspects of input program, unlike
concrete syntax trees which record the
complete textual form of the input
◦ There’s no need to record keywords or

punctuation like (), ;, else
◦ The rest of compiler only cares about the

abstract structure

AST Node ClassesAST Node Classes
Each node in an AST is an instance of an

AST class
◦ IfStmt, AssignStmt, AddExpr, VarDecl,

etc.

Each AST class declares its own instance
variables holding its AST subtrees
◦ IfStmt has testExpr, thenStmt, and
elseStmt
◦ AssignStmt has lhsVar and rhsExpr
◦ AddExpr has arg1Expr and arg2Expr
◦ VarDecl has typeExpr and varName

AST Class HierarchyAST Class Hierarchy
AST classes are organized into an inheritance

hierarchy based on commonalities of
meaning and structure

 Each "abstract non-terminal" that has multiple
alternative concrete forms will have an
abstract class that’s the superclass of the
various alternative forms
◦ Stmt is abstract superclass of IfStmt,
AssignStmt, etc.
◦ Expr is abstract superclass of AddExpr,
VarExpr, etc.
◦ Type is abstract superclass of IntType,
ClassType, etc.

AST Extensions For ProjectAST Extensions For Project
New variable declarations:
◦ StaticVarDecl

New types:
◦ DoubleType
◦ ArrayType

New/changed statements:
◦ IfStmt can omit else branch
◦ ForStmt
◦ BreakStmt
◦ ArrayAssignStmt

New expressions:
◦ DoubleLiteralExpr
◦ OrExpr
◦ ArrayLookupExpr
◦ ArrayLengthExpr
◦ ArrayNewExpr

Automatic Parser Generation in Automatic Parser Generation in
MiniJavaMiniJava

We use the CUP tool to automatically create a parser
from a specification file, Parser/minijava.cup

The MiniJava Makefile automatically rebuilds the
parser whenever its specification file changes

A CUP file has several sections:
◦ introductory declarations included with the generated

parser
◦ declarations of the terminals and nonterminals with their

types
◦ The AST node or other value returned when finished

parsing that nonterminal or terminal
◦ precedence declarations
◦ productions + actions

Terminal and Terminal and NonterminalNonterminal
DeclarationsDeclarations

Terminal declarations we saw before:
/* reserved words: */
terminal CLASS, PUBLIC, STATIC, EXTENDS;
...
/* tokens with values: */
terminal String IDENTIFIER;
terminal Integer INT_LITERAL;

Nonterminals are similar:
nonterminal Program Program;
nonterminal MainClassDecl MainClassDecl;
nonterminal List/*<...>*/ ClassDecls;
nonterminal RegularClassDecl ClassDecl;
...
nonterminal List/*<Stmt>*/ Stmts;
nonterminal Stmt Stmt;
nonterminal List/*<Expr>*/ Exprs;
nonterminal List/*<Expr>*/ MoreExprs;
nonterminal Expr Expr;
nonterminal String Identifier;

Precedence DeclarationsPrecedence Declarations
Can specify precedence and associativity of operators
◦ equal precedence in a single declaration
◦ lowest precedence textually first
◦ specify left, right, or nonassoc with each declaration

Examples:
precedence left AND_AND;
precedence nonassoc EQUALS_EQUALS,

EXCLAIM_EQUALS;
precedence left LESSTHAN, LESSEQUAL,

GREATEREQUAL, GREATERTHAN;
precedence left PLUS, MINUS;
precedence left STAR, SLASH;
precedence left EXCLAIM;
precedence left PERIOD;

ProductionsProductions
All of the form:

LHS ::= RHS1 {: Java code 1 :}
| RHS2 {: Java code 2 :}
| ...
| RHSn {: Java code n :};

Can label symbols in RHS with:var suffix to refer to its
result value in Java code
 varleft is set to line in input where var symbol was

E.g.: Expr ::= Expr:arg1 PLUS Expr:arg2

{: RESULT = new AddExpr(arg1,arg2,arg1left);:}
| INT_LITERAL:value{: RESULT = new IntLiteralExpr(
value.intValue(),valueleft);:}

| Expr:rcvr PERIOD Identifier:message OPEN_PAREN
Exprs:args CLOSE_PAREN

{: RESULT = new MethodCallExpr(
rcvr,message,args,rcvrleft);:}

| ... ;

Error HandlingError Handling
How to handle syntax error?
Option 1: quit compilation

+ easy
- inconvenient for programmer

Option 2: error recovery
+ try to catch as many errors as possible on one

compile
- difficult to avoid streams of spurious errors

Option 3: error correction
+ fix syntax errors as part of compilation
- hard!!

Panic Mode Error RecoveryPanic Mode Error Recovery
When finding a syntax error, skip tokens until reaching a

“landmark”
 landmarks in MiniJava: ;,), }
 once a landmark is found, hope to have gotten back on track

In top-down parser, maintain set of landmark tokens as
recursive descent proceeds

 landmarks selected from terminals later in production
 as parsing proceeds, set of landmarks will change, depending on the

parsing context
In bottom-up parser, can add special error nonterminals,

followed by landmarks
 if syntax error, then will skip tokens till seeing landmark, then reduce

and continue normally
 E.g. Stmt ::= ... | error ; | { error }

Expr ::= ... | (error)

