
Compiler Design

Lecture-6

Predictive Parsing

Topics Covered

n Introduction to Predictive Parsing
n How we make Parsing Table.

Predictive parsing
n Recall the main idea of top-down parsing:

– Start at the root, grow towards leaves
– Pick a production and try to match input
– May need to backtrack

n Can we avoid the backtracking?
– Given A   |  the parser should be able to

choose between  and 
n How?

– What if we do some "preprocessing" to answer the
question: Given a non-terminal A and lookahead t,
which (if any) production of A is guaranteed to
start with a t?

Predictive parsing

n If we have two productions: A ,
we want a distinct way of choosing the
correct one.

n Define:
– for G, x  FIRST() iff  * x

n If FIRST() and FIRST() contain no
common symbols, we will know whether
we should choose A or A by
looking at the lookahead symbol.

Predictive parsing

n Compute FIRST(X) as follows:
– if X is a terminal, then FIRST(X)={X}
– if X is a production, then add  to

FIRST(X)
– if X is a non-terminal and XY1Y2...Yn is a

production, add FIRST(Yi) to FIRST(X) if
the preceding Yjs contain  in their FIRSTs

Predictive parsing

n What if we have a "candidate"
production A where = or *?

n We could expand if we knew that there
is some sentential form where the
current input symbol appears after A.

n Define:
– for AN, xFOLLOW(A) iff  S*Ax

Predictive parsing

n Compute FOLLOW as follows:
– FOLLOW(S) contains EOF
– For productions AB, everything in

FIRST() except  goes into FOLLOW(B)
– For productions AB or AB where

FIRST() contains , FOLLOW(B) contains
everything that is in FOLLOW(A)

Predictive parsing

n Armed with
– FIRST
– FOLLOW

n we can build a parser where no
backtracking is required!

Predictive parsing (w/table)

n For each production A do:
– For each terminal a  FIRST() add A

to entry M[A,a]
– If FIRST(), add A to entry M[A,b]

for each terminal b  FOLLOW(A).
– If FIRST() and EOFFOLLOW(A), add

A to M[A,EOF]
n Use table and stack to simulate

recursion.

Recursive Descent Parsing
n Basic idea:

– Write a routine to recognize each lhs
– This produces a parser with mutually

recursive routines.
– Good for hand-coded parsers.

n Example:
– AaB | b will correspond to

A() {
if (lookahead == 'a')

match('a');
B();

else if (lookahead == 'b')
match ('b');

else error();
}

Building a parser
n Original grammar:

n This grammar is left-recursive, ambiguous and requires left-
factoring. It needs to be modified before we build a predictive
parser for it:

EE+E
EE*E
E(E)
Eid

EE+T
TT*F
F(E)
Fid

Remove ambiguity:
ETE'
E'+TE'|
TFT'
T'*FT'|
F(E)
Fid

Remove left recursion:

Building a parser

n The grammar:
ETE'
E'+TE'|
TFT'
T'*FT'|
F(E)
Fid

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}
FIRST(E') = {+, }
FIRST(T') = {*, }
FOLLOW(E) = FOLLOW(E') = {$,)}
FOLLOW(T) = FOLLOW(T') = {+, $,)}
FOLLOW(F) = {*, +, $,)}

Now, we can either build a table or design a recursive descend
parser.

Parsing table

E
E'
T
T'
F
+
*
(
)
id
$

+

E'+TE'

T'

match

*

T'*FT'

match

(
ETE'

TFT'

F(E)

match

)

E'

T'

match

id
ETE'

TFT'

Fid

match

$

E'

T'

accept

Parsing table
Parse the input id*id using the parse table and a stack

Step Stack Input Next Action
1 $E id*id$ ETE'
2 $E'T id*id$ TFT'
3 $E'T'F id*id$ Fid
4 $E'T'id id*id$ match id
5 $E'T' *id$ T'*FT'
6 $T'F* *id$ match *
7 $T'F id$ Fid
8 $T'id id$ match id
9 $T' $ T'

10 $ $ accept

Recursive descend parser

E() {
if (T())
then return Eprime()
else return false

}

parse() {
token = get_next_token();
if (E() and token == '$')
then return true
else return false

}

Eprime() {
if (token == '+')
then token=get_next_token()

if (T())
then return Eprime()
else return false

else if (token==')' or token=='$')
then return true
else return false

}

The remaining procedures are similar.

LL(1) parsing
n Our parser scans the input Left-to-right,

generates a Leftmost derivation and
uses 1 symbol of lookahead.

n It is called an LL(1) parser.
n If you can build a parsing table with no

multiply-defined entries, then the
grammar is LL(1).

n Ambiguous grammars are never LL(1)
n Non-ambiguous grammars are not

necessarily LL(1)

LL(1) parsing
n For example, the following grammar will

have two possible ways to expand S'
when the lookahead is else.

– It may expand S' else S or S' 
– We can resolve the ambiguity by instructing the parser to always

pick S' else S. This will match each else to the closest previous
then.

S  if E then S S' | other
S' else S | 
E  id

LL(1) parsing
n Here's an example of a grammar that is

NOT LL(k) for any k:

– Why? Suppose the grammar was LL(k) for
some k. Consider the input string ck+1a. With
only k lookaheads, the parser would not be
able to decide whether to expand using S 
Ca or S  Cb

– Note that the grammar is actually regular: it
generates strings of the form c+(a|b)

S  Ca | Cb
C  cC | c

Error detection in LL(1) parsing
n An error is detected whenever an empty

table slot is encountered.
n We would like our parser to be able to

recover from an error and continue
parsing.

n Phase-level recovery
– We associate each empty slot with an error

handling procedure.
n Panic mode recovery

– Modify the stack and/or the input string to
try and reach state from which we can
continue.

Error recovery in LL(1) parsing
n Panic mode recovery

– Idea:
• Decide on a set of synchronizing tokens.
• When an error is found and there's a

nonterminal at the top of the stack, discard
input tokens until a synchronizing token is
found.

• Synchronizing tokens are chosen so that the
parser can recover quickly after one is found

– e.g. a semicolon when parsing statements.

• If there is a terminal at the top of the stack, we
could try popping it to see whether we can
continue.

– Assume that the input string is actually missing that
terminal.

Error recovery in LL(1) parsing
n Panic mode recovery

– Possible synchronizing tokens for a
nonterminal A

• the tokens in FOLLOW(A)
– When one is found, pop A of the stack and try to

continue

• the tokens in FIRST(A)
– When one is found, match it and try to continue

• tokens such as semicolons that terminate
statements

