Compiler Design

Lecture-6

Predictive Parsing

Topics Covered

n Introduction to Predictive Parsing
n How we make Parsing Table.

n Can we avoid the backtracking?

— Given A — a | B the parser should be able to
choose between o and 3

n How?

— What if we do some "preprocessing” to answer the
guestion: Given a non-terminal A and lookahead t,
which (if any) production of A is guaranteed to
start with a t?

Predictive parsing
n Recall the main idea of top-down parsing:
— Start at the root, grow towards leaves
— Pick a production and try to match input
— May need to backtrack
]

Predictive parsing

n If we have two productions: A—>a | B,
we want a distinct way of choosing the
correct one.

n Define:
—for aeG, x € FIRST(a) Iff oo =* xy

n If FIRST(a) and FIRST(3) contain no
common symbols, we will know whether

g we should choose A—a or A—f3 by

l looking at the lookahead symbol.

FIRST(X)

—1f X Is a non-terminal and X—Y,Y,...Y Is a
production, add FIRST(Y;) to FIRST(X) if
the preceding Y;s contain ¢ in their FIRSTs

Predictive parsing
n Compute FIRST(X) as follows:
—If X is a terminal, then FIRST(X)={X}
I — If X—>¢ Is a production, then add ¢ to
]

Predictive parsing

n What if we have a "candidate"
production A—»>a where a=¢ or a=%¢?

n We could expand if we knew that there
IS some sentential form where the
current input symbol appears after A.

n Define:
—for AeN, xeFOLLOW(A) iff 3 S=*aAxp

~IRST(B) except € goes into FOLLOW(B)

— For productions A—»aB or A—»aBf3 where
—-IRST(B) contains ¢, FOLLOW(B) contains
everything that is in FOLLOW(A)

Predictive parsing
n Compute FOLLOW as follows:
— FOLLOW(S) contains EOF
I — For productions A—aBp, everything in
]

Predictive parsing

n Armed with
— FIRST
— FOLLOW

n we can build a parser where no
backtracking is required!

Predictive parsing (w/table)

n For each production A—o do:

— For each terminal a € FIRST(a) add A—a
to entry M[A,a]

—If eeFIRST(a), add A—a to entry M[A,Db]
for each terminal b € FOLLOW(A).

—If £eFIRST(a) and EOFeFOLLOW(A), add
A—>a to M[A,EOF]

C— n Use table and stack to simulate

l recursion.

Recursive Descent Parsing

n Basic idea:
— Write a routine to recognize each |lhs

— This produces a parser with mutually
recursive routines.

— Good for hand-coded parsers.

n Example:

— A—aB | b will correspond to

AQ {
If (lookahead == "a")
match('a");
B();
else if (lookahead == "b")
match ("b");
else error();

}

Building a parser

E—>E+E

E—>E*E

E—(E)

E—id

n This grammar is left-recursive, ambiguous and requires left-

factoring. It needs to be modified before we build a predictive
parser for it:

n Original grammar:

Remove ambiguity: Remove left recursion:
E>E+T E—>TE’
T>T*F E'—>+TE"|e
- F—(E) ToFT®
T >*FT"|¢

F—id
F—(E)
F—id

Building a parser

E->TE"
The grammar: E'>+TE"|¢

T>FT?

T">*FT"|e

F—(E)

F—id
FIRST(E) = FIRST(T) = FIRST(F) = {(, id}
FIRST(E") = {+, €}
FIRST(T") = {*, &}
FOLLOW(E) = FOLLOW(E"®) ={$,)}
FOLLOW(T) = FOLLOW(T") = {+, $,)}
FOLLOW(F) = {*, +, $,)}

Now, we can either build a table or design a recursive descend
parser.

Parsing table

+ * () id $
E E>TE' E->TE
E'IE'">+TE E'—>¢ E'—>¢
T TFT T->FT
T T'>¢e | T'>*FT° T"'>e¢ T"'>e¢
F F—(E) F—id
+ | match
* match
(match
) match
id match
$ accept

Parsing table

Parse the input id*id using the parse table and a stack

Step Stack Input Next Action
1 $E id*id$ E>TE"
2 $E'T id*id$ T>FT"
3 $E'T'F id*id$ F—id
4 $E'T"id id*id$ match id
5 $E'T" *1d$p T'>*FT"
6 $T'F* *id$ match *
4 $T°F id$ F—id
8 $T'id id$ match id

- 9 $T" $ T"'>¢
10 $ $ accept

Recursive descend parser

parse() { Eprime() {
token = get_next_token(); if (token == "+")
if (E() and token == "3$") then token=get_next_token()
then return true if (TO)
else return false

then return Eprime()

} else return false
EQ { else if (token==")" or token=="%")
it (TO) then return true
then return Eprime() else return false
else return false }
}

The remaining procedures are similar.

n Itis called an LL(1) parser.

n If you can build a parsing table with no
multiply-defined entries, then the
grammar is LL(1).

n Ambiguous grammars are never LL(1)

n Non-ambiguous grammars are not
necessarily LL(1)

LL(1) parsing
n Our parser scans the input Left-to-right,
generates a Leftmost derivation and
uses 1 symbol of lookahead.
]

S—>IifEthen S S" | other
S'>else S| e
E—id

— It may expand S'—> else Sor S'—> ¢

— We can resolve the ambiguity by instructing the parser to always
pick S'— else S. This will match each else to the closest previous
then.

LL(1) parsing
n For example, the following grammar will
have two possible ways to expand S'
when the lookahead Is else.
]

NOT LL(k) for any k:

S—»>Cal|Cb
C—o>cC|c

LL(1) parsing
n Here's an example of a grammar that is
— Why? Suppose the grammar was LL(k) for
some k. Consider the input string ck*la. With
only k lookaheads, the parser would not be
able to decide whether to expand using S —»

= CaorS —> Cb

— Note that the grammar is actually reqular: it
generates strings of the form c*(a|b)

Error detection in LL(1) parsing
n An error Is detected whenever an empty
table slot Is encountered.

n We would like our parser to be able to
recover from an error and continue
parsing.

n Phase-level recovery

— We associate each empty slot with an error
handling procedure.

n Panic mode recovery

— Modify the stack and/or the input string to
try and reach state from which we can
continue.

nonterminal at the top of the stack, discard
iInput tokens until a synchronizing token is
found.

« Synchronizing tokens are chosen so that the
parser can recover quickly after one is found
— e.g. a semicolon when parsing statements.

o If there Is a terminal at the top of the stack, we
could try popping it to see whether we can
continue.

— Assume that the input string is actually missing that
terminal.

Error recovery in LL(1) parsing
n Panic mode recovery
— ldea:
e Decide on a set of synchronizing tokens.
« When an error is found and there's a
]

Error recovery in LL(1) parsing

n Panic mode recovery

— Possible synchronizing tokens for a
nonterminal A

 the tokens in FOLLOW(A)

— When one is found, pop A of the stack and try to
continue

 the tokens in FIRST(A)
— When one is found, match it and try to continue

e tokens such as semicolons that terminate
statements

