Compiler Design

Lecture-6

Predictive Parsing

Topics Covered

n Introduction to Predictive Parsingn How we make Parsing Table.

- n Recall the main idea of top-down parsing:
 - Start at the root, grow towards leaves
 - Pick a production and try to match input
 - May need to backtrack
- n Can we avoid the backtracking?
 - Given A $\rightarrow \alpha \mid \beta$ the parser should be able to choose between α and β
- n How?
 - What if we do some "preprocessing" to answer the question: Given a non-terminal A and lookahead t, which (if any) production of A is guaranteed to start with a t?

- n If we have two productions: $A \rightarrow \alpha \mid \beta$, we want a distinct way of choosing the correct one.
- n Define:
 - for $\alpha \in G$, $\mathbf{x} \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \mathbf{x}\gamma$
- n If FIRST(α) and FIRST(β) contain no common symbols, we will know whether we should choose A $\rightarrow \alpha$ or A $\rightarrow \beta$ by looking at the lookahead symbol.

n Compute FIRST(X) as follows:

- if X is a terminal, then FIRST(X)={X}
- if $X \rightarrow \epsilon$ is a production, then add ϵ to FIRST(X)
- if X is a non-terminal and $X \rightarrow Y_1 Y_2 \dots Y_n$ is a production, add FIRST(Y_i) to FIRST(X) if the preceding Y_is contain ε in their FIRSTs

- n What if we have a "candidate" production $A \rightarrow \alpha$ where $\alpha = \varepsilon$ or $\alpha \Rightarrow^* \varepsilon$?
- n We could expand if we knew that there is some sentential form where the current input symbol appears after A.
- n Define:
 - for $A \in N$, $\mathbf{x} \in FOLLOW(A)$ iff $\exists S \Rightarrow^* \alpha A \mathbf{x} \beta$

n Compute FOLLOW as follows:

- FOLLOW(S) contains EOF
- For productions $A \rightarrow \alpha B\beta$, everything in FIRST(β) except ϵ goes into FOLLOW(B)
- For productions $A \rightarrow \alpha B$ or $A \rightarrow \alpha B\beta$ where FIRST(β) contains ϵ , FOLLOW(B) contains everything that is in FOLLOW(A)

n Armed with

- FIRST
- FOLLOW
- n we can build a parser where no backtracking is required!

Predictive parsing (w/table)

n For each production $A \rightarrow \alpha$ do:

- For each terminal $\mathbf{a} \in FIRST(\alpha)$ add $A \rightarrow \alpha$ to entry M[A, \mathbf{a}]
- If $\epsilon \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to entry M[A,b] for each terminal $\mathbf{b} \in FOLLOW(A)$.
- If $\epsilon \in FIRST(\alpha)$ and $EOF \in FOLLOW(A)$, add $A \rightarrow \alpha$ to M[A,EOF]
- n Use table and stack to simulate recursion.

Recursive Descent Parsing

n Basic idea:

- Write a routine to recognize each lhs
- This produces a parser with mutually recursive routines.
- Good for hand-coded parsers.

n Example:

```
- A \rightarrow aB | b will correspond to

A() {

    if (lookahead == 'a')

        match('a');

    B();

    else if (lookahead == 'b')

        match ('b');

    else error();

    }
```


Building a parser

Original grammar: n

$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

This grammar is left-recursive, ambiguous and requires leftn factoring. It needs to be modified before we build a predictive parser for it:

Remove ambiguity: Remove left recursion:

$$E \rightarrow E+T$$
$$T \rightarrow T^*F$$
$$F \rightarrow (E)$$
$$F \rightarrow id$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \varepsilon$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Building a parser

The grammar:

$$E \rightarrow TE' | \varepsilon$$

$$E' \rightarrow + TE' | \varepsilon$$

$$T \rightarrow FT' | \varepsilon$$

$$T' \rightarrow * FT' | \varepsilon$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

FIRST(E) = FIRST(T) = FIRST(F) = {(, id} FIRST(E') = {+, ϵ } FIRST(T') = {*, ϵ } FOLLOW(E) = FOLLOW(E') = {**\$**, **}**} FOLLOW(T) = FOLLOW(T') = {+, **\$**, **}**} FOLLOW(F) = {*, +, **\$**, **}**

Now, we can either build a table or design a recursive descend parser.

Parsing table

Parsing table

Parse the input id*id using the parse table and a stack

<u>Step</u>	Stack	Input	Next Action
1	\$ E	id*id\$	E→TE'
2	\$ E'T	id*id\$	T→FT'
3	\$ E'T'F	id*id\$	F→id
4	\$ E' ⊤'id	id*id\$	match id
5	\$ E'T'	*id\$	T'→*FT'
6	\$ T'F*	*id\$	match *
7	\$ T'F	id\$	F→id
8	\$ ⊤'id	id\$	match id
9	\$ T'	\$	T'→ε
10	\$	\$	accept

Recursive descend parser

parse() {
 token = get_next_token();
 if (E() and token == '\$')
 then return true
 else return false

E() {
 if (T())
 then return Eprime()
 else return false

}

```
Eprime() {
    if (token == '+')
    then token=get_next_token()
        if (T())
        then return Eprime()
        else return false
    else if (token==')' or token=='$')
    then return true
    else return false
}
```

The remaining procedures are similar.

LL(1) parsing

- Nour parser scans the input Left-to-right, generates a Leftmost derivation and uses 1 symbol of lookahead.
- n It is called an LL(1) parser.
- n If you can build a parsing table with no multiply-defined entries, then the grammar is LL(1).
- n Ambiguous grammars are never LL(1)
- Non-ambiguous grammars are not necessarily LL(1)

LL(1) parsing

n For example, the following grammar will have two possible ways to expand S' when the lookahead is else.

 $\begin{array}{l} S \rightarrow \textit{if } E \textit{ then } S \textit{ S'} \mid \textit{other} \\ S' \rightarrow \textit{else } S \mid \epsilon \\ E \rightarrow \textit{id} \end{array}$

- It may expand S' \rightarrow else S or S' $\rightarrow \epsilon$
- We can resolve the ambiguity by instructing the parser to always pick S'→ else S. This will match each else to the closest previous then.

LL(1) parsing

Here's an example of a grammar that is NOT LL(k) for any k:

 $\begin{array}{c} \mathsf{S} \to \mathsf{C}\mathbf{a} \mid \mathsf{C}\mathbf{b} \\ \mathsf{C} \to \mathbf{c}\mathsf{C} \mid \mathbf{c} \end{array}$

- Why? Suppose the grammar was LL(k) for some k. Consider the input string $c^{k+1}a$. With only k lookaheads, the parser would not be able to decide whether to expand using S \rightarrow Ca or S \rightarrow Cb

 Note that the grammar is actually regular: it generates strings of the form c⁺(a|b)

Error detection in LL(1) parsing

- n An error is detected whenever an empty table slot is encountered.
- n We would like our parser to be able to recover from an error and continue parsing.
- n Phase-level recovery
 - We associate each empty slot with an error handling procedure.
- n Panic mode recovery
 - Modify the stack and/or the input string to try and reach state from which we can continue.

Error recovery in LL(1) parsing Panic mode recovery

– Idea:

- Decide on a set of synchronizing tokens.
- When an error is found and there's a nonterminal at the top of the stack, discard input tokens until a synchronizing token is found.
- Synchronizing tokens are chosen so that the parser can recover quickly after one is found
 - e.g. a semicolon when parsing statements.
- If there is a terminal at the top of the stack, we could try popping it to see whether we can continue.
 - Assume that the input string is actually missing that terminal.

Error recovery in LL(1) parsing

- n Panic mode recovery
 - Possible synchronizing tokens for a nonterminal A
 - the tokens in FOLLOW(A)
 - When one is found, pop A of the stack and try to continue
 - the tokens in FIRST(A)
 - When one is found, match it and try to continue
 - tokens such as semicolons that terminate statements